SLUSFK5 June   2024 UCC33410

ADVANCE INFORMATION  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Insulation Specifications
    6. 5.6 Safety-Related Certifications
    7. 5.7 Electrical Characteristics
    8. 5.8 External BOM Components
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Enable and Disable
      2. 6.3.2 Output Voltage Soft-Start and Steady-State Regulation
      3. 6.3.3 Protection Features
        1. 6.3.3.1 Input Under-voltage and Over-Voltage Lockout
        2. 6.3.3.2 Output Under-Voltage Protection
        3. 6.3.3.3 Output Over-Voltage Protection
        4. 6.3.3.4 Over-Temperature Protection
        5. 6.3.3.5 Fault Reporting and Auto-Restart
      4. 6.3.4 VCC Output Voltage Selection
      5. 6.3.5 VCC Load Recommended Operating Area
      6. 6.3.6 Electromagnetic Compatibility (EMC) Considerations
    4. 6.4 Device Functional Modes
    5. 6.5 Pre-Production Samples Operating Limits
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
      2. 7.4.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 Device Support
    2. 8.2 Documentation Support
      1. 8.2.1 Related Documentation
    3. 8.3 Receiving Notification of Documentation Updates
    4. 8.4 Support Resources
    5. 8.5 Trademarks
    6. 8.6 Electrostatic Discharge Caution
    7. 8.7 Glossary
  10. Revision History
  11. 10Mechanical and Packaging Information

Electromagnetic Compatibility (EMC) Considerations

UCC33410 devices use spread spectrum modulation algorithm for the internal oscillator and advanced internal layout scheme to minimize radiated emissions at the system level.

Many applications in harsh industrial environment are sensitive to disturbances such as electrostatic discharge (ESD), electrical fast transient (EFT), surge and electromagnetic emissions. These electromagnetic disturbances are regulated by international standards such as IEC 61000-4-x , CISPR 32 and CISPR-25. Although system-level performance and reliability depends, to a large extent, on the application board design and layout, the device incorporates many chip-level design improvements for overall system robustness.