SLUU274A May   2007  – January 2022 TPS40193

 

  1.   Trademarks
  2. 1Introduction
    1. 1.1 Description
    2. 1.2 Applications
    3. 1.3 Features
  3. 2TPS40193EVM-001 Electrical Performance Specifications
  4. 3Schematic
  5. 4General Configuration and Description
    1. 4.1 Adjusting Output Voltage (R7)
    2. 4.2 Adjusting Short-Circuit Protection (R9)
    3. 4.3 Disable Jumper (JP1)
    4. 4.4 Test Point Descriptions
      1. 4.4.1 Input Voltage Monitoring (TP1, TP2)
      2. 4.4.2 Power-Good (TP3, TP4, TP5)
      3. 4.4.3 Compensation and Initialization (TP6)
      4. 4.4.4 Switching Waveforms (TP7, TP8, TP9, TP10)
      5. 4.4.5 Loop Analysis (TP11, TP12, TP13, TP14)
      6. 4.4.6 Output Voltage and Monitoring (TP15, TP16)
      7. 4.4.7 Pre-Bias Input (TP17)
  6. 5Test Setup
    1. 5.1 Equipment
      1. 5.1.1 Voltage Source
      2. 5.1.2 Meters
      3. 5.1.3 Loads
      4. 5.1.4 Oscilloscope
      5. 5.1.5 Recommended Wire Gauge
      6. 5.1.6 Other
    2. 5.2 Equipment Setup
    3. 5.3 Start-Up/Shutdown Procedure
    4. 5.4 Output Ripple Voltage Measurement Procedure
    5. 5.5 Control Loop Gain and Phase Measurement Procedure
    6. 5.6 Equipment Shutdown
  7. 6TPS40193EVM-001 Typical Performance Data and Characteristic Curves
    1. 6.1 Efficiency
    2. 6.2 Line and Load Regulation
    3. 6.3 Output Voltage Ripple
    4. 6.4 Switch Node
    5. 6.5 Control Loop Bode Plot
      1. 6.5.1 Low Line (VIN = 8 V)
      2. 6.5.2 High Line (VIN = 14 V)
  8. 7EVM Assembly Drawings and Layout
  9. 8Bill of Materials
  10. 9Revision History

Other

Fan: This evaluation module includes components that can become hot to the touch. Because this EVM is not enclosed (to allow probing of circuit nodes), a small fan capable of 200lfm–400lfm is required to reduce component surface temperatures to prevent user injury.

CAUTION:

The EVM should not be left unattended while powered.

WARNING:

The EVM should not be probed while the fan is not running.