SLUUBL7A February   2017  – February 2022 TPS543C20

 

  1.   Trademarks
  2. Introduction
    1. 1.1 Before You Begin
  3. Description
    1. 2.1 Typical End-User Applications
    2. 2.2 EVM Features
  4. EVM Electrical Performance Specifications
  5. Schematic
  6. Test Equipment
  7. TPS543C20EVM-869
  8. List of Test Points, Jumpers, and Switches
  9. Test Procedure
    1. 8.1 Line and Load Regulation Measurement Procedure
    2. 8.2 Efficiency
    3. 8.3 Equipment Shutdown
  10. Performance Data and Typical Characteristic Curves
    1. 9.1 Load Regulation
    2. 9.2 Efficiency
    3. 9.3 Power Loss
    4. 9.4 Transient Response
    5. 9.5 Output Ripple
    6. 9.6 Enable On
    7. 9.7 Control On and Off
    8. 9.8 Thermal Image
  11. 10EVM Assembly Drawing and PCB Layout
  12. 11List of Materials
  13. 12Revision History

Test Equipment

Voltage source: The input voltage source, VIN, must be a 0-V to 18-V variable DC source capable of supplying at least 20 ADC.

Multimeters: It is recommended to use two separate multimeters. One meter is used to measure VIN and one to measure VOUT.

Output load: A variable electronic load is recommended for testing. It must be capable of 100 A at voltages as low as 0.6 V.

Oscilloscope: An oscilloscope is recommended for measuring output noise and ripple. Output ripple must be measured using a tip-and-barrel method or better as shown in Figure 6-2. The scope must be adjusted to 20-MHz bandwidth, AC coupling at 50 mV/division, and must be set to 1 µs/division.

Fan: During prolonged operation at high loads, it may be necessary to provide forced air cooling with a small fan aimed at the EVM. Temperature of the devices on the EVM must be maintained below 105°C.

Recommended wire gauge: The voltage drop in the load wires must be kept as low as possible in order to keep the working voltage at the load within its operating range. Use the AWG 14 wire (2 wires parallel for VOUT positive and 2 wires parallel for the VOUT negative) of no more than 1.98 feet between the EVM and the load. This recommended wire gauge and length should achieve a voltage drop of no more than 0.2 V at the maximum 80-A load.