SLVAES1A June   2020  – May 2022 DRV8300

 

  1.   Trademarks
  2. 1Motor Considerations and Why Brushless DC Motors?
  3. 2Motor Driver Architecture
    1. 2.1 Gate Driver vs Integrated FET Driver: Power, Voltage, and Current Requirements
    2. 2.2 Three Use Cases: Speed, Torque, or Position:
    3. 2.3 Control Methods: Trap, Sine, or FOC
      1. 2.3.1 Trapezoidal
      2. 2.3.2 Sinusoidal
      3. 2.3.3 Field-Oriented Control
    4. 2.4 Sensored Versus Sensorless
      1. 2.4.1 Sensored
      2. 2.4.2 Sensorless
    5. 2.5 Current Sense Amplifiers
    6. 2.6 Interface
    7. 2.7 Power Integration
    8. 2.8 100% Duty Cycle Support
  4. 3Texas Instruments' Brushless-DC Motor Drivers
    1. 3.1 Gate Drivers: DRV8x and DRV3x family
      1. 3.1.1 DRV8x Family
      2. 3.1.2 DRV3x Family
    2. 3.2 Integrated MOSFET: DRV831x Family
    3. 3.3 Control and Gate Driver: MCx Family
    4. 3.4 Full Integration: MCx831x and DRV10x Family
      1. 3.4.1 MCx831x Family
      2. 3.4.2 DRV10x family
  5. 4Conclusion
  6. 5Revision History

Conclusion

As using BLDC motors is becoming more common in applications today, understanding the architecture options and key considerations when choosing a specific BLDC motor driver is important to get the most out of a design, whether that be for size optimization, increasing thermal efficiency, lessening commutation complexity, or lowering total BOM cost. As discussed in this document, TI’s BLDC motor driver portfolio supports various architectures and use cases to enable designers of all applications to get the most out of their BLDC systems. To learn more about BLDC’s motor driver solutions, visit the products page at http://www.ti.com/motor-drivers/brushless-dc-bldc-drivers/products.html.