SLVAEX3 October   2020 TPS8802 , TPS8804

 

  1.   Trademarks
  2. 1Introduction
  3. 2SNR Optimization
    1. 2.1 SNR Overview
    2. 2.2 Smoke Concentration Measurement
    3. 2.3 Amplifier and LED Settings
      1. 2.3.1 Photo Amplifier Gain
      2. 2.3.2 Photo Amplifier and AMUX Speed
      3. 2.3.3 LED Current and Pulse Width
    4. 2.4 ADC Sampling and Digital Filtering
      1. 2.4.1 ADC Sampling
      2. 2.4.2 Digital Filtering
  4. 3System Modeling
    1. 3.1 Impulse Response
      1. 3.1.1 Photodiode Input Amplifier Model
      2. 3.1.2 Photodiode Gain Amplifier and AMUX Buffer Model
      3. 3.1.3 Combined Signal Chain
    2. 3.2 Noise Modeling
      1. 3.2.1 Noise Sources
      2. 3.2.2 Output Voltage Noise Model
      3. 3.2.3 ADC Quantization Noise
    3. 3.3 SNR Calculation
      1. 3.3.1 Single ADC Sample
      2. 3.3.2 Two ADC Samples
      3. 3.3.3 Multiple Base ADC Samples
      4. 3.3.4 Multiple Top ADC Samples
      5. 3.3.5 Multiple ADC Sample Simulation
  5. 4SNR Measurements
    1. 4.1 Measurement Procedure
    2. 4.2 Measurement Processing
    3. 4.3 Measurement Results
      1. 4.3.1 Varying Amplifier Speeds
      2. 4.3.2 Varying Digital Filter and ADC Timing
      3. 4.3.3 Varying LED Pulse Length
      4. 4.3.4 Varying ADC Sample Rate
      5. 4.3.5 Real and Ideal System Conditions
      6. 4.3.6 Number of Base Samples
      7. 4.3.7 ADC Resolution
  6. 5Summary
  7. 6References

Summary

By modifying amplifier speed and gain, LED current and pulse width, multiple ADC sample timing, and digital processing, the TPS880x achieves high SNR (>30 dB) with 1 nA photodiode current. Measurements of a photoelectric smoke sensor with a TPS8802EVM demonstrate various methods of improving SNR. A model of the system signal and noise provides intuition behind the results. The most effective methods are optimizing the amplifier time constants and taking multiple ADC samples. Longer time constants are effective when one top ADC sample is taken and shorter time constants are effective when multiple top ADC samples are taken. The optimal number of samples depends on the ADC sample rate, LED pulse length, and type of digital filtering. The averaging filter is sufficient for most applications and can be changed to a matched filter for higher SNR at the cost of more computational complexity. In power-critical applications, shortening the LED pulse width and increasing LED current can improve the SNR. The TPS880x smoke alarm AFE using these methods enables the next generation of smoke alarms to achieve fewer false alarms, reduced power consumption, and lower system cost.