SLVAFU8 July   2024 TPSI2072-Q1 , TPSI2140-Q1 , TPSI3050 , TPSI3050-Q1 , TPSI3052 , TPSI3052-Q1 , TPSI3100 , TPSI3100-Q1

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Introduction
  5. 2What Are Solid-State Relays?
    1. 2.1 History
      1. 2.1.1 Electromechanical Relays
      2. 2.1.2 Solid-State Relays
    2. 2.2 Isolation Technologies
      1. 2.2.1 Isolation Specifications
    3. 2.3 Relay Evolution
  6. 3Failure Mechanisms
    1. 3.1 Arcing in an Electromechanical Relay
    2. 3.2 Photo-degradation in Photo Relays
    3. 3.3 Partial Discharge
    4. 3.4 Time-Dependent Dielectric Breakdown in Capacitive and Inductive Isolation
  7. 4Electromechanical vs. Photo vs. Capacitive or Inductive
    1. 4.1 Electromechanical Relays
      1. 4.1.1 Advantages
        1. 4.1.1.1 No Leakage Current
      2. 4.1.2 Limitations
        1. 4.1.2.1 Switching Speed
        2. 4.1.2.2 Package Size
    2. 4.2 Photo or Optical Relays
      1. 4.2.1 Advantages
        1. 4.2.1.1 Lower EMI
      2. 4.2.2 Limitations
        1. 4.2.2.1 Limited Temperature Range
    3. 4.3 Capacitive or Inductive Based Relays
      1. 4.3.1 Advantages
        1. 4.3.1.1 Auxiliary Power
        2. 4.3.1.2 Bidirectional Communication
      2. 4.3.2 Limitations
        1. 4.3.2.1 EMI
    4. 4.4 Overall Comparison
  8. 5Summary
  9. 6References

Bidirectional Communication

Capacitive and inductive isolation technologies are capable of implementing diagnostics and protection features. These technologies are able to send signals across the isolation barrier in both directions, allowing for bidirectional communication. As an example, TPSI3100-Q1 is able to send signal and power from primary to secondary side, as well as send diagnostics like fault and alarm signals from secondary to primary side. These diagnostic features can be used to detect system faults like over current or monitor system conditions like inrush currents. Optical designs are only able to send power from primary to secondary side allowing only unidirectional communication, unable to provide diagnostics to the system.

  Isolated Switch Driver with
                    Bidirectional Communication Block Diagram Figure 4-4 Isolated Switch Driver with Bidirectional Communication Block Diagram