SLVS632K January   2006  – January 2024 TPS5430 , TPS5431

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information (DDA Package)
    5. 5.5 Electrical Characteristics
    6. 5.6 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1  Oscillator Frequency
      2. 6.3.2  Voltage Reference
      3. 6.3.3  Enable (ENA) and Internal Slow Start
      4. 6.3.4  Undervoltage Lockout (UVLO)
      5. 6.3.5  Boost Capacitor (BOOT)
      6. 6.3.6  Output Feedback (VSENSE) and Internal Compensation
      7. 6.3.7  Voltage Feed-Forward
      8. 6.3.8  Pulse-Width-Modulation (PWM) Control
      9. 6.3.9  Overcurrent Limiting
      10. 6.3.10 Overvoltage Protection
      11. 6.3.11 Thermal Shutdown
    4. 6.4 Device Functional Modes
      1. 6.4.1 Operation near Minimum Input Voltage
      2. 6.4.2 Operation with ENA control
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Applications
      1. 7.2.1 12-V Input to 5.0-V Output
        1. 7.2.1.1 Design Requirements
        2. 7.2.1.2 Detailed Design Procedure
          1. 7.2.1.2.1 Custom Design With WEBENCH® Tools
          2. 7.2.1.2.2 Switching Frequency
          3. 7.2.1.2.3 Input Capacitors
          4. 7.2.1.2.4 Output Filter Components
            1. 7.2.1.2.4.1 Inductor Selection
            2. 7.2.1.2.4.2 Capacitor Selection
          5. 7.2.1.2.5 Output Voltage Set-Point
          6. 7.2.1.2.6 BOOT Capacitor
          7. 7.2.1.2.7 Catch Diode
          8. 7.2.1.2.8 Advanced Information
            1. 7.2.1.2.8.1 Output Voltage Limitations
            2. 7.2.1.2.8.2 Internal Compensation Network
            3. 7.2.1.2.8.3 Thermal Calculations
        3. 7.2.1.3 Application Curves
      2. 7.2.2 Wide Input Voltage Ranges with TPS5430
        1. 7.2.2.1 Design Requirements
        2. 7.2.2.2 Detailed Design Procedure
        3. 7.2.2.3 Wide Input Voltage Ranges with TPS5431
          1. 7.2.2.3.1 Design Requirements
          2. 7.2.2.3.2 Detailed Design Procedure
      3. 7.2.3 Circuit Using Ceramic Output Filter Capacitors
        1. 7.2.3.1 Design Requirements
        2. 7.2.3.2 Detailed Design Procedure
          1. 7.2.3.2.1 Output Filter Component Selection
          2. 7.2.3.2.2 External Compensation Network
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
      2. 7.4.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 Device Support
      1. 8.1.1 Third-Party Products Disclaimer
      2. 8.1.2 Development Support
        1. 8.1.2.1 Custom Design With WEBENCH® Tools
    2. 8.2 Receiving Notification of Documentation Updates
    3. 8.3 Support Resources
    4. 8.4 Trademarks
    5. 8.5 Electrostatic Discharge Caution
    6. 8.6 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information
Inductor Selection

To calculate the minimum value of the output inductor, use Equation 4:

Equation 4. GUID-C4CFFACC-FD64-446C-A11C-0263F4D9C44D-low.gif

KIND is a coefficient that represents the amount of inductor ripple current relative to the maximum output current. Three things need to be considered when determining the amount of ripple current in the inductor: the peak to peak ripple current affects the output ripple voltage amplitude, the ripple current affects the peak switch current and the amount of ripple current determines at what point the circuit becomes discontinuous. For designs using the TPS5430, KIND of 0.2 to 0.3 yields good results. Low output ripple voltages can be obtained when paired with the proper output capacitor, the peak switch current will be well below the current limit set point and relatively low load currents can be sourced before discontinuous operation.

For this design example use KIND = 0.2 and the minimum inductor value is calculated to be 12.5 μH. The next highest standard value is 15 μH, which is used in this design.

For the output filter inductor it is important that the RMS current and saturation current ratings not be exceeded. The RMS inductor current can be found from Equation 5:

Equation 5. GUID-F9EA5DAB-34EF-436F-BA41-65F856D69FF8-low.gif

and the peak inductor current can be determined with Equation 6:

Equation 6. GUID-4BC24948-1DA4-4678-A109-F9468C5C2EA7-low.gif

For this design, the RMS inductor current is 3.003 A, and the peak inductor current is 3.31 A. The chosen inductor is a Sumida CDRH104R-150 15 μH. It has a saturation current rating of 3.4 A and a RMS current rating of 3.6 A, easily meeting these requirements. A lesser rated inductor can be used, however this device was chosen because of its low profile component height. In general, inductor values for use with the TPS5430 are in the range of 10 μH to 100 μH.