SLVS714B February   2007  – June 2024 TPS2062-1 , TPS2065-1 , TPS2066-1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 Recommended Operating Conditions
    3. 5.3 Thermal Information
    4. 5.4 Electrical Characteristics
    5. 5.5 Typical Characteristics
  7. Parameter Measurement Information
    1.     13
  8. Detailed Description
    1. 7.1  Functional Block Diagram
    2. 7.2  Power Switch
    3. 7.3  Charge Pump
    4. 7.4  Driver
    5. 7.5  Enable ( ENx or ENx)
    6. 7.6  Current Sense
    7. 7.7  Overcurrent
      1. 7.7.1 Overcurrent Conditions (TPS2062-1 and TPS2065-1)
      2. 7.7.2 Overcurrent Conditions (TPS2066-1)
    8. 7.8  Overcurrent ( OCx)
    9. 7.9  Thermal Sense
    10. 7.10 Undervoltage Lockout
    11. 7.11 Discharge Function
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1  Power-Supply Considerations
      2. 8.1.2  OC Response
      3. 8.1.3  Power Dissipation and Junction Temperature
      4. 8.1.4  Thermal Protection
      5. 8.1.5  Undervoltage Lockout (UVLO)
      6. 8.1.6  Universal Serial Bus (USB) Applications
      7. 8.1.7  Host/Self-Powered and Bus-Powered Hubs
      8. 8.1.8  Low-Power Bus-Powered and High-Power Bus-Powered Functions
      9. 8.1.9  USB Power-Distribution Requirements
      10. 8.1.10 Generic Hot-Plug Applications
  10. Device and Documentation Support
    1. 9.1 Device Support
    2. 9.2 Documentation Support
    3. 9.3 Receiving Notification of Documentation Updates
    4. 9.4 Support Resources
    5. 9.5 Trademarks
    6. 9.6 Electrostatic Discharge Caution
    7. 9.7 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Thermal Protection

Thermal protection prevents damage to the IC when heavy-overload or short-circuit faults are present for extended periods of time. The TPS206x-1 implements a thermal sensing to monitor the operating junction temperature of the power distribution switch. In an overcurrent or short-circuit condition, the junction temperature rises due to excessive power dissipation. Once the die temperature rises to approximately 140°C due to overcurrent conditions, the internal thermal sense circuitry turns the power switch off, thus preventing the power switch from damage. Hysteresis is built into the thermal sense circuit, and after the device has cooled approximately 10°C, the switch turns back on. The switch continues to cycle in this manner until the load fault or input power is removed. The OCx open-drain output is asserted (active low) when an overtemperature shutdown or overcurrent occurs.