SLVS754D March   2007  – January 2015 TPS65053

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Dissipation Ratings
    6. 6.6 Electrical Characteristics
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagrams
    3. 7.3 Feature Description
      1. 7.3.1 Power Save Mode
        1. 7.3.1.1 Dynamic Voltage Positioning
        2. 7.3.1.2 Soft Start
        3. 7.3.1.3 100% Duty Cycle Low Dropout Operation
        4. 7.3.1.4 Undervoltage Lockout
      2. 7.3.2 Mode Selection
      3. 7.3.3 Enable
      4. 7.3.4 Dynamic Ouput Voltage Scaling
      5. 7.3.5 RESET on the TPS65053x
      6. 7.3.6 RESET Generation and Output Monitoring on the TPS65058
      7. 7.3.7 Short-Circuit Protection
      8. 7.3.8 Thermal Shutdown
    4. 7.4 Device Functional Modes
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 DCDC Output Voltage Setting
        2. 8.2.2.2 LDO Output Voltage Setting
        3. 8.2.2.3 Low Dropout Voltage Regulators
        4. 8.2.2.4 DCDC Output Filter Design (Inductor and Output Capacitor)
          1. 8.2.2.4.1 Inductor Selection
          2. 8.2.2.4.2 Output Capacitor Selection
        5. 8.2.2.5 DCDC Input Capacitor Selection
        6. 8.2.2.6 Sequencing and Output Logic Signal RESET
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
    2. 11.2 Related Links
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
VI Input voltage on all pins except AGND, PGND, and EN_LDO1 pins with respect to AGND –0.3 7 V
Input voltage on EN_LDO1 pin with respect to AGND –0.3 Vcc + 0.5 V
II Current at VINDCDC1/2, L1, PGND1, L2, PGND2 1800 1800 mA
Current at all other pins 1000 1000 mA
VO Output voltage for LDO1, LDO2 and LDO3 –0.3 4.0 V
TA Operating free-air temperature –40 85 °C
TJ Maximum junction temperature 125 °C
Tstg Storage temperature –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible with the necessary precautions.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible with the necessary precautions.

6.3 Recommended Operating Conditions

MIN NOM MAX UNIT
VINDCDC1/2 Input voltage range for step-down converters 2.5 6 V
VDCDC1 Output voltage range for VDCDC1 step-down converter for externally adjustable versions 0.6 VINDCDC1 V
VDCDC2 Output voltage range for VDCDC2 step-down converter for externally adjustable versions 0.6 VINDCDC2 V
VINLDO1, VINLDO2/3 Input voltage range for LDOs 1.5 6.5 V
VLDO1-2 Output voltage range for LDO1 and LDO2 for externally adjustable versions 1 3.6 V
Output voltage for LDO1 on TPS65058 3.3 V
Output voltage for LDO2 on TPS65058 (DEF_LDO = 1 / 0) 1.8 / 1.2 V
VLDO3 Output voltage for LDO3 on TPS65053 1.3 V
Output voltage for LDO3 on TPS650531 1.2
Output voltage for LDO3 on TPS650532 1.5
Output voltage for LDO3 on TPS65058 (DEF_LDO = 1 / 0) 1.8 / 1.3 V
IOUTDCDC1 Output current at L1 for TPS65053, TPS650531, TPS650532 1000 mA
Output current at L1 for TPS65058 600 mA
L1 Inductor at L1(1) 1.5 2.2 μH
CINDCDC1/2 Input capacitor at VINDCDC1/2(1) 22 μF
COUTDCDC1 Output capacitor at VDCDC1(1) 10 22 μF
IOUTDCDC2 Output current at L2 for TPS65053 600 mA
Output current at L2 for TPS650531, TPS650532, TPS65058 1000
L2 Inductor at L2(1) 1.5 2.2 μH
COUTDCDC2 Output capacitor at VDCDC2(1) 10 22 μF
CVCC Input capacitor at VCC (1) 1 μF
Cin1-2 Input capacitor at VINLDO1, VINLDO2/3 (1) 2.2 μF
COUT1 Output capacitor at VLDO1 (1) 4.7 μF
COUT2-3 Output capacitor at VLDO2-3 (1) 2.2 μF
ILDO1 Output current at VLDO1 400 mA
ILDO2,3 Output current at VLDO2,3 200 mA
TA Operating ambient temperature range –40 85 °C
TJ Operating junction temperature range –40 125 °C
RCC Resistor from battery voltage to VCC used for filtering(2) 1 10 Ω
(1) See the Application Information section of this data sheet for more details.
(2) Up to 2 mA can flow into VCC when both converters are running in PWM, this resistor causes the UVLO threshold to be shifted accordingly.

6.4 Thermal Information

THERMAL METRIC(1) TPS65053 UNIT
VQFN
24 PINS
RθJA Junction-to-ambient thermal resistance 31.4 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 29.0
RθJB Junction-to-board thermal resistance 8.2
ψJT Junction-to-top characterization parameter 0.3
ψJB Junction-to-board characterization parameter 8.2
RθJC(bot) Junction-to-case (bottom) thermal resistance 1.6
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 Dissipation Ratings

PACKAGE RθJA(1) TA  ≤ 25°C
POWER RATING
DERATING FACTOR
ABOVE TA = 25°C
TA  = 70°C
POWER RATING
TA  = 85°C
POWER RATING
RGE 35 K/W 2.8 W 28 mW/K 1.57 W 1.14 W
(1) The thermal resistance junction to case of the RGE package is 2 K/W measured on a high K board.

6.6 Electrical Characteristics

Vcc = VINDCDC1/2 = 3.6V, EN = Vcc, MODE = GND, L = 2.2μH, COUT = 22μF, TA = –40°C to 85°C typical values
are at TA = 25°C (unless otherwise noted).
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SUPPLY CURRENT
Vcc Input voltage range 2.5 6 V
IQ Operating quiescent current
Total current into VCC, VINDCDC1/2, VINLDO1, VINLDO2/3
One converter, IOUT = 0 mA.PFM mode enabled
(Mode = GND) device not switching,
EN_DCDC1 = Vin OR EN_DCDC2 = Vin;
EN_LDO1= EN_LDO2 = EN_LDO3 = GND
20 30 μA
Two converters, IOUT = 0 mA, PFM mode enabled
(Mode = 0) device not switching,
EN_DCDC1 = Vin AND EN_DCDC2 = Vin;
EN_LDO1 = EN_LDO2 = EN_LDO3 = GND
32 40 μA
One converter, IOUT = 0 mA, PFM mode enabled
(Mode = GND) device not switching,
EN_DCDC1 = Vin OR EN_DCDC2 = Vin;
EN_LDO1 = EN_LDO2 = EN_LDO3 = Vin
145 210 μA
IQ Operating quiescent current into VCC One converter, IOUT = 0 mA, Switching with no load
(Mode = Vin), PWM operation
EN_DCDC1 = Vin OR EN_DCDC2 = Vin;
EN_LDO1 = EN_LDO2 = EN_LDO3 = GND
0.85 mA
Two converters, IOUT = 0 mA, Switching with no load
(Mode = Vin), PWM operation
EN_DCDC1 = Vin AND EN_DCDC2 = Vin;
EN_LDO1 = EN_LDO2 = EN_LDO3 = GND
1.25 mA
I(SD) Shutdown current EN_DCDC1 = EN_DCDC2 = GND
EN_LDO1 = EN_LDO2 = EN_LDO3 = GND
9 12 μA
UVLO Undervoltage lockout threshold for DCDC converters and LDOs Voltage at VCC 1.8 2 V
EN_DCDC1, EN_DCDC2, EN_LDO1, EN_LDO2, EN_LDO3, MODE
VIH High-level input voltage MODE, EN_DCDC1, EN_DCDC2, EN_LDO1, EN_LDO2, EN_LDO3 1.2 VCC V
VIL Low-level input voltage MODE, EN_DCDC1, EN_DCDC2, EN_LDO1, EN_LDO2, EN_LDO3 0 0.4 V
IIN Input bias current MODE, EN_DCDC1, EN_DCDC2, EN_LDO1, EN_LDO2, EN_LDO3, MODE = GND or VIN 0.01 1 μA
POWER SWITCH
rDS(on) High Side P-channel MOSFET on resistance for TPS65053, TPS650531, TPS650532 DCDC1, DCDC2 VINDCDC1/2 = 3.6 V 280 630
VINDCDC1/2 = 2.5 V 400
P-channel MOSFET on resistance for TPS65058 DCDC1, DCDC2 VINDCDC1/2 = 3.6 V 250 350
VINDCDC1/2 = 2.5 V 380 500
ILD_PMOS P-channel leakage current V(DS) = 6 V 1 μA
rDS(on) Low-Side N-channel MOSFET on resistance for TPS65053, TPS650531, TPS650532 DCDC1, DCDC2 VINDCDC1/2 = 3.6 V 220 450
VINDCDC1/2 = 2.5 V 320
N-channel MOSFET on resistance for TPS65058 DCDC1, DCDC2 VINDCDC1/2 = 3.6 V 180 250
VINDCDC1/2 = 2.5 V 250
ILK_NMOS N-channel leakage current V(DS) = 6 V 7 10 μA
I(LIMF) Forward Current Limit PMOS (High-Side) and NMOS (Low side) DCDC1 (TPS65053, TPS650531, TPS650532) 2.5 V ≤ VIN ≤ 6 V 1.19 1.4 1.65 A
DCDC1 (TPS65058) 0.85 1 1.15
DCDC2 (TPS65053) 0.85 1 1.15
DCDC2 (TPS650531, TPS650532, TPS65058) 1.19 1.4 1.65
TSD Thermal shutdown Increasing junction temperature 150 °C
Thermal shutdown hysteresis Decreasing junction temperature 20 °C
OSCILLATOR
fSW Oscillator frequency 2.025 2.25 2.475 MHz
OUTPUT
VOUT Output voltage range for externally adjustable versions 0.6 VIN V
Vref Reference voltage 600 mV
VOUT DC output voltage accuracy DCDC1, DCDC2(1) VIN = 2.5 V to 6 V, Mode = GND,
PFM operation, 0 mA < IOUT < IOUTMAX
-2% 0 2%
VIN = 2.5 V to 6 V, Mode = VIN,
PWM operation, 0 mA < IOUT < IOUTMAX
–1% 0 1%
ΔVOUT Power save mode ripple voltage(2) IOUT = 1 mA, Mode = GND, VO = 1.3 V,
Bandwidth = 20 MHz
25 mVPP
tStart Start-up time Time from active EN to Start switching 170 μs
tRamp VOUT Ramp up Time Time to ramp from 5% to 95% of VOUT 750 μs
RESET delay time Input voltage at threshold pin rising 80 100 120 ms
VOL RESET output low voltage IOL = 1 mA, Vthreshold < 1 V 0.2 V
RESET sink current 1 mA
RESET output leakage current (Vthreshold > 1 V for TPS65053, TPS650531, TPS650532) 10 nA
Vth Threshold voltage TPS65053, TPS650531, TPS650532 falling voltage 0.98 1 1.02 V
VLDO1, VLDO2, VLDO3 LOW DROPOUT REGULATORS
VINLDO Input voltage range for LDO1, LDO2, LDO3 1.5 6.5 V
VLDO1 LDO1 output voltage range for TPS65053, TPS650531, TPS650532 1 3.6 V
LDO1 output voltage for TPS65058 3.3 V
VLDO2 LDO2 output voltage range for TPS65053, TPS650531, TPS650532 1 3.6 V
LDO2 output voltage for TPS65058 DEF_LDO = 1 / 0 1.8 / 1.2 V
VLDO3 LDO3 output voltage for TPS65053 1.3 V
LDO3 output voltage for TPS650531 1.2
LDO3 output voltage for TPS650532 1.5
LDO3 output voltage for TPS65058 DEF_LDO = 1 / 0 1.8 / 1.3
V(FB) Feedback voltage for FB_LDO1, FB_LDO2 for externally adjustable versions 1 V
IO Maximum output current for LDO1 400 mA
Maximum output current for LDO2, LDO3 200 mA
I(SC) LDO1 short-circuit current limit VLDO1 = GND 850 mA
LDO2 & LDO3 short-circuit current limit VLDO2 = GND, VLDO3 = GND 420 mA
Dropout voltage at LDO1 IO = 400 mA, VINLDO1 = 1.8 V 280 mV
Dropout voltage at LDO2, LDO3 IO = 200 mA, VINLDO2/3 = 1.8 V 280 mV
Output voltage accuracy for LDO1, LDO2, LDO3(1) IO = 10 mA –2% 1%
Line regulation for LDO1, LDO2, LDO3 VINLDO1,2 = VLDO1,2 + 0.5 V (min. 2.5 V) to 6.5V, IO = 10 mA –1% 1%
Load regulation for LDO1, LDO2, LDO3 IO = 0 mA to 400 mA for LDO1
IO = 0 mA to 200 mA for LDO2, LDO3
–1% 1%
Regulation time for LDO1, LDO2, LDO3 Load change from 10% to 90% 25 μs
Regulation time for LDO1, LDO2, LDO3 for TPS65058 Load change from 10% to 90% 10 μs
PSRR Power Supply Rejection Ratio f = 10 kHz; IO = 50 mA; VI = VO + 1 V
R(DIS) Internal discharge resistor at VLDO1, VLDO2, VLDO3 Active when LDO is disabled 350 Ω
Internal discharge resistor at VLDO1, VLDO2, VLDO3 for TPS65058 Active when LDO is disabled 300 Ω
Thermal shutdown Increasing junction temperature 140 °C
Thermal shutdown hysteresis Decreasing junction temperature 20 °C
(1) Output voltage specification does not include tolerance of external voltage programming resistors.
(2) In Power Save Mode, operation is typically entered at IPSM = VIN / 32 Ω.

6.7 Typical Characteristics

Table 1. Table Of Graphs for TPS6505xx

FIGURE
η Efficiency converter 1 vs Load current PWM/PFM mode Figure 1
η Efficiency converter 1 vs Load current PWM mode Figure 2
η Efficiency converter 2 vs Load current PWM/PFM mode Figure 3
η Efficiency converter 2 vs Load current PWM mode Figure 4
Output voltage ripple in PFM mode Scope plot Figure 5
Output voltage ripple in PWM mode Scope plot Figure 6
DCDC1, DCDC2, LDO1 startup timing Scope plot Figure 7
LDO1 to LDO3 startup timing Scope plot Figure 8
DCDC1 Load transient response in PWM mode Scope plot Figure 9
DCDC1 Load transient response in PFM mode Scope plot Figure 10
DCDC2 Load transient response in PWM mode Scope plot Figure 11
DCDC2 Load transient response in PFM mode Scope plot Figure 12
DCDC1 Line transient response in PWM mode Scope plot Figure 13
DCDC2 Line transient response in PWM mode Scope plot Figure 14
LDO1 Load transient response Scope plot Figure 15
LDO3 Load transient response Scope plot Figure 16
LDO1 Line transient response Scope plot Figure 17
LDO1 Power supply rejection ratio vs frequency Figure 18
eff1_v_vo_lvs754.gifFigure 1. Efficiency vs Output Current
eff3_v_vo_lvs754.gifFigure 3. Efficiency vs Output Current
vo_rip_low_lvs754.gifFigure 5. Output Voltage Ripple PWM/PFM Mode = Low
dcdc1_startup_lvs754.gifFigure 7. DCDC1 Startup Timing
dcdc1_load_hi_lvs710.gifFigure 9. DCDC1 Load Transient Response
dcdc2_load_hi_lvs710.gifFigure 11. DCDC2 Load Transient Response
dcdc1_line_hi_lvs710.gifFigure 13. DCDC1 Line Transient Response
ldo1_load_lvs754.gifFigure 15. LDO1 Load Transient Response
ldo1_line_lvs710.gifFigure 17. LDO1 Line Transient Response
eff2_v_vo_lvs754.gifFigure 2. Efficiency vs Output Current
eff4_v_vo_lvs754.gifFigure 4. Efficiency vs Output Current
vo_rip_high_lvs754.gifFigure 6. Output Voltage Ripple PWM Mode = High
ldo_startup_lvs754.gifFigure 8. LDO1 to LDO3 Startup Timing
dcdc1_load_low_lvs710.gifFigure 10. DCDC1 Load Transient Response
dcdc2_load_low_lvs710.gifFigure 12. DCDC2 Load Transient Response
dcdc2_line_hi_lvs710.gifFigure 14. DCDC2 Line Transient Response
ldo3_load_lvs754.gifFigure 16. LDO3 Load Transient Response
pssr_v_f_lvs754.gifFigure 18. LDO1 Power Supply Rejection Ratio vs Frequency