SLVSAE3A August   2010  – January 2016 TPS650231

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (continued)
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Electrical Characteristics
    6. 7.6  Electrical Characteristics: Control Signals
    7. 7.7  Electrical Characteristics: Supply Pins VCC, VINDCDC1, VINDCDC2, VINDCDC3, VINDCDC13
    8. 7.8  Electrical Characteristics: Supply Pins VBACKUP, VSYSIN, VRTC, VINLDO
    9. 7.9  Electrical Characteristics: VDCDC1 Step-Down Converter
    10. 7.10 Electrical Characteristics: VDCDC2 Step-Down Converter
    11. 7.11 Electrical Characteristics: VDCDC3 Step-Down Converter
    12. 7.12 Timing Requirements
    13. 7.13 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagrams
    3. 8.3 Feature Description
      1. 8.3.1  VRTC Output and Operation With or Without Backup Battery
      2. 8.3.2  Step-Down Converters, VDCDC1, VDCDC2, and VDCDC3
      3. 8.3.3  Power Save Mode Operation
      4. 8.3.4  Low-Ripple Mode
      5. 8.3.5  Soft-Start
      6. 8.3.6  100% Duty Cycle Low-Dropout Operation
      7. 8.3.7  Active Discharge When Disabled
      8. 8.3.8  Power-Good Monitoring
      9. 8.3.9  Low-Dropout Voltage Regulators
      10. 8.3.10 Undervoltage Lockout
      11. 8.3.11 Power-Up Sequencing
      12. 8.3.12 System Reset + Control Signals
        1. 8.3.12.1 DEFLDO1 and DEFLDO2
        2. 8.3.12.2 Interrupt Management and the INT Pin
    4. 8.4 Device Functional Modes
    5. 8.5 Programming
      1. 8.5.1 Serial Interface
    6. 8.6 Register Maps
      1. 8.6.1 VERSION Register Address: 00h (Read Only)
      2. 8.6.2 PGOODZ Register Address: 01h (Read Only)
      3. 8.6.3 MASK Register Address: 02h (Read or Write), Default Value: C0h
      4. 8.6.4 REG_CTRL Register Address: 03h (Read or Write), Default Value: FFh
      5. 8.6.5 CON_CTRL Register Address: 04h (Read or Write), Default Value: B1h
      6. 8.6.6 CON_CTRL2 Register Address: 05h (Read or Write), Default Value: 40h
      7. 8.6.7 DEFCORE Register Address: 06h (Read or Write), Default Value: 14h/1Eh
      8. 8.6.8 DEFSLEW Register Address: 07h (Read or Write), Default Value: 06h
      9. 8.6.9 LDO_CTRL Register Address: 08h (Read or Write), Default Value: Set with DEFLDO1 and DEFLDO2
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Input Voltage Connection
      2. 9.1.2 Unused Regulators
      3. 9.1.3 Reset Condition of DCDC1
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Inductor Selection for the DC-DC Converters
        2. 9.2.2.2 Output Capacitor Selection
        3. 9.2.2.3 Input Capacitor Selection
        4. 9.2.2.4 Output Voltage Selection
        5. 9.2.2.5 VRTC Output
        6. 9.2.2.6 LDO1 and LDO2
        7. 9.2.2.7 TRESPWRON
        8. 9.2.2.8 VCC Filter
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
    1. 10.1 Requirements for Supply Voltages Below 3.0 V
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
    2. 12.2 Community Resources
    3. 12.3 Trademarks
    4. 12.4 Electrostatic Discharge Caution
    5. 12.5 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
VI Input voltage range on all pins except AGND and PGND pins with respect to AGND –0.3 7 V
Current at VINDCDC1, L1, PGND1, VINDCDC2, L2, PGND2, VINDCDC3, L3, PGND3 2500 mA
Peak current at all other pins 1000 mA
TA Operating free-air temperature –40 85 °C
TJ Junction temperature 125 °C
Tstg Storage temperature –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
VCC Input voltage range step-down converters
(VINDCDC1, VINDCDC2, VINDCDC3); pins need to be tied to the same voltage rail
2.5 6 V
VO Output voltage range for VDCDC1 step-down converter(1) 0.6 VINDCDC1 V
Output voltage range for VDCDC2 step-down converter(1) 0.6 VINDCDC2
Output voltage range for VDCDC3 step-down converter(1) 0.6 VINDCDC3
VI Input voltage range for LDOs (VINLDO) 1.5 6.5 V
VO Output voltage range for LDOs (VLDO1, VLDO2) 1 VINLDO1-2 V
IO(DCDC1) Output current at L1 1700 mA
Inductor at L1(2) 1.5 2.2 μH
CI(DCDC1) Input capacitor at VINDCDC1(2) 10 μF
CO(DCDC1) Output capacitor at VDCDC1(2) 10 22 μF
IO(DCDC2) Output current at L2 1200 mA
Inductor at L2(2) 1.5 2.2 μH
CI(DCDC2) Input capacitor at VINDCDC2(2) 10 μF
CO(DCDC2) Output capacitor at VDCDC2(2) 10 22 μF
IO(DCDC3) Output current at L3 800 mA
Inductor at L3(2) 1.5 2.2 μH
CI(DCDC3) Input capacitor at VINDCDC3(2) 10 μF
CO(DCDC3) Output capacitor at VDCDC3(2) 10 22 μF
CI(VCC) Input capacitor at VCC(2) 1 μF
CI(VINLDO) Input capacitor at VINLDO(2) 1 μF
CO(VLDO1-2) Output capacitor at VLDO1, VLDO2(2) 2.2 μF
IO(VLDO1-2) Output current at VLDO1, VLDO2 200 mA
CO(VRTC) Output capacitor at VRTC(2) 4.7 μF
TA Operating ambient temperature –40 85 °C
TJ Operating junction temperature –40 125 °C
Resistor from VINDCDC3, VINDCDC2, VINDCDC1 to VCC used for filtering(3) 1 10 Ω
(1) When using an external resistor divider at DEFDCDC3, DEFDCDC2, DEFDCDC1
(2) See Application Information section for more information
(3) Up to 3 mA can flow into VCC when all 3 converters are running in PWM. This resistor causes the UVLO threshold to be shifted accordingly.

7.4 Thermal Information

THERMAL METRIC(1) TPS650231 UNIT
RSB (VQFN) YFF (DSBGA)
40 PINS 49 BALLS
RθJA Junction-to-ambient thermal resistance 32.7 40 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 15.3 10 °C/W
RθJB Junction-to-board thermal resistance 13.6 15 °C/W
ψJT Junction-to-top characterization parameter 0.1 0.1 °C/W
ψJB Junction-to-board characterization parameter 5.4 14 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 1.1 N/A °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report (SPRA953).

7.5 Electrical Characteristics

VINDCDC1 = VINDCDC2 = VINDCDC3 (VINDCDC13) = VCC = VINLDO = 3.6 V, VBACKUP = 3 V, TA = –40°C to +85°C (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT
VLDO1 AND VLDO2 LOW-DROPOUT REGULATORS
VI Input voltage range for LDO1, 2 1.5 6.5 V
VO(LD01) LDO1 output voltage range 1 3.15 V
VO(LDO2) LDO2 output voltage range 1.05 3.3 V
IO Maximum output current for LDO1, LDO2 VI = 1.8 V, VO = 1.3 V 200 mA
VI = 1.5 V, VO = 1.3 V 120
I(SC) LDO1 and LDO2 short-circuit current limit V(LDO1) = GND, V(LDO2) = GND 400 mA
Minimum voltage drop at LDO1, LDO2 IO = 50 mA, VINLDO = 1.8 V 120 mV
IO = 50 mA, VINLDO = 1.5 V 65 150
IO = 200 mA, VINLDO = 1.8 V 300
Output voltage accuracy for LDO1, LDO2 IO = 10 mA –2% 1%
Line regulation for LDO1, LDO2 VINLDO1, 2 = VLDO1,2 + 0.5 V
(min. 2.5 V) to 6.5 V, IO = 10 mA
–1% 1%
Load regulation for LDO1, LDO2 IO = 0 mA to 50 mA –1% 1%
Regulation time for LDO1, LDO2 Load change from 10% to 90% 10 μs
ANALOGIC SIGNALS DEFDCDC1, DEFDCDC2, DEFDCDC3
VIH High-level input voltage 1.3 VCC V
VIL Low-level input voltage 0 0.1 V
Input bias current 0.001 0.05 μA
THERMAL SHUTDOWN
T(SD) Thermal shutdown Increasing junction temperature 160 °C
Thermal shutdown hysteresis Decreasing junction temperature 20 °C
INTERNAL UNDERVOLTAGE LOCKOUT
UVLO Internal UVLO VCC falling –2% 2.35 2% V
V(UVLO_HYST) Internal UVLO comparator hysteresis 120 mV
VOLTAGE DETECTOR COMPARATOR INPUTS PWRFAIL_SNS, LOWBAT_SNS
Comparator threshold
(PWRFAIL_SNS, LOWBAT_SNS)
LOWBAT_SNS for TPS650231RSB only
Falling threshold –1% 1 1% V
Hysteresis 40 50 60 mV
Propagation delay 25-mV overdrive 10 μs
ILK Input leakage current 0.001 0.1 μA
POWER-GOOD
V(PGOODF) VDCDC1, VDCDC2, VDCDC3, VLDO1, VLDO2, decreasing –12% –10% –8%
V(PGOODR) VDCDC1, VDCDC2, VDCDC3, VLDO1, VLDO2, increasing –7% –5% –3%
(1) Typical values are at TA = 25°C

7.6 Electrical Characteristics: Control Signals

VINDCDC1 = VINDCDC2 = VINDCDC3 = VCC = VINLDO = 3.6 V, VBACKUP = 3 V, TA = –40°C to +85°C (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT
SCLK, SDAT (INPUT)
VIH High level input voltage for the SCLK pin Rpullup at SCLK = 4.7 kΩ, pulled to VRTC; For VCC = 2.5 V to 5.25 V 1.4 VCC V
VIH High level input voltage for the SDAT pin Rpullup at SDAT = 4.7 kΩ, pulled to VRTC; For VCC = 2.5 V to 5.25 V 1.69 VCC V
VIH High level input voltage for the SDAT pin Rpullup at SDAT = 4.7 kΩ, pulled to VRTC; For VCC = 2.5 V to 4.5 V 1.55 VCC V
VIL Low level input voltage Rpullup at SCLK and SDAT = 4.7 kΩ, pulled to VRTC 0 0.35 V
IH Input bias current 0.01 0.1 μA
HOT_RESET , DCDC1_EN, DCDC2_EN, DCDC3_EN, LDO_EN, DEFLDO1, DEFLDO2
VIH High-level input voltage 1.3 VCC V
VIL Low-level input voltage 0 0.4 V
IIB Input bias current 0.01 0.1 μA
tdeglitch Deglitch time at HOT_RESET 25 30 35 ms
LOWBAT, PWRFAIL, RESPWRON, INT, SDAT (OUTPUT)
VOH High-level output voltage 6 V
VOL Low-level output voltage IIL = 5 mA 0 0.3 V
Duration of low pulse at RESPWRON External capacitor 1 nF 100 ms
ICONST Internal charge or discharge current on pin TRESPWRON Used for generating RESPWRON delay 1.7 2 2.3 μA
TRESPWRON_LOWTH Internal lower comparator threshold on pin TRESPWRON Used for generating RESPWRON delay 0.225 0.25 0.275 V
TRESPWRON_UPTH Internal upper comparator threshold on pin TRESPWRON Used for generating RESPWRON delay 0.97 1 1.103 V
Resetpwron threshold VRTC falling –3% 2.4 3% V
Resetpwron threshold VRTC rising –3% 2.52 3% V
ILK Leakage current Output inactive high 0.001 0.1 μA
(1) Typical values are at TA = 25°C

7.7 Electrical Characteristics: Supply Pins VCC, VINDCDC1, VINDCDC2, VINDCDC3, VINDCDC13

VINDCDC1 = VINDCDC2 = VINDCDC3 = VCC = VINLDO = 3.6 V, VBACKUP = 3 V, TA = –40°C to +85°C (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT
I(q) Operating quiescent current, PFM All 3 DCDC converters enabled, zero load, and no switching, LDOs enabled; VCC = 3.6 V, VBACKUP = 3 V; V(VSYSIN) = 0 V 85 100 μA
All 3 DCDC converters enabled, zero load, and no switching, LDOs off; VCC = 3.6 V, VBACKUP = 3 V; V(VSYSIN) = 0 V 78 90
DCDC1 and DCDC2 converters enabled, zero load, and no switching, LDOs off; VCC = 3.6 V, VBACKUP = 3 V;
V(VSYSIN) = 0 V
57 70
DCDC1 converter enabled, zero load, and no switching, LDOs off; VCC = 3.6 V, VBACKUP = 3 V; V(VSYSIN) = 0 V 43 55
II Current into VCC; PWM All 3 DCDC converters enabled and running in PWM, LDOs off; VCC = 3.6 V, VBACKUP = 3 V; V(VSYSIN) = 0 V 2 3 mA
DCDC1 and DCDC2 converters enabled and running in PWM, LDOs off; VCC = 3.6 V, VBACKUP = 3 V; V(VSYSIN) = 0 V 1.5 2.5
DCDC1 converter enabled and running in PWM, LDOs off; VCC = 3.6 V, VBACKUP = 3 V; V(VSYSIN) = 0 V 0.85 2
I(q) Quiescent current All converters disabled, LDOs off; VCC = 3.6 V,
VBACKUP = 3 V; V(VSYSIN) = 0 V
23 33 μA
All converters disabled, LDOs off; VCC = 2.6 V,
VBACKUP = 3 V; V(VSYSIN) = 0 V
3.5 5 μA
All converters disabled, LDOs off; VCC = 3.6 V,
VBACKUP = 0 V; V(VSYSIN) = 0 V
43 μA
I(SD) Shutdown supply current into VINDCDC1 for TPS650231RSB DCDC1_EN = GND 0.1 1 μA
Shutdown supply current into VINDCDC2 for TPS650231RSB DCDC2_EN = GND 0.1 1 μA
Shutdown supply current into VINDCDC3 for TPS650231RSB DCDC3_EN = GND 0.1 1 μA
Shutdown supply current into VINDCDC13 for TPS650231YFF DCDC1_EN = DCDC3_EN = GND 0.2 2 μA
(1) Typical values are at TA = 25°C

7.8 Electrical Characteristics: Supply Pins VBACKUP, VSYSIN, VRTC, VINLDO

VINDCDC1 = VINDCDC2 = VINDCDC3 (VINDCDC13) = VCC = VINLDO = 3.6 V, VBACKUP = 3 V, TA = –40°C to +85°C (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT
VBACKUP, VSYSIN, VRTC
I(q) Operating quiescent current VBACKUP = 3 V, VSYSIN = 0 V;
VCC = 2.6 V, current into VBACKUP
20 33 μA
I(SD) Operating quiescent current VBACKUP < V_VBACKUP, current into VBACKUP 2 3 μA
VRTC LDO output voltage VSYSIN = VBACKUP = 0 V, IO = 0 mA 3 V
IO Output current for VRTC VSYSIN < 2.57 V and VBACKUP < 2.57 V 30 mA
VRTC short-circuit current limit VRTC = GND; VSYSIN = VBACKUP = 0 V 100 mA
Maximum output current at VRTC
for RESPWRON = 1
VRTC > 2.6 V, VCC = 3 V;
VSYSIN = VBACKUP = 0 V
30 mA
VO Output voltage accuracy for VRTC VSYSIN = VBACKUP = 0 V; IO = 0 mA –1% 1%
Line regulation for VRTC VCC = VRTC + 0.5 V to 6.5 V, IO = 5 mA –1% 1%
Load regulation VRTC IO = 1 mA to 30 mA; VSYSIN = VBACKUP = 0 V –3% 1%
Regulation time for VRTC Load change from 10% to 90% 10 μs
Ilkg Input leakage current at VSYSIN VSYSIN < V_VSYSIN 2 μA
rDS(on) of VSYSIN switch 12.5 Ω
rDS(on) of VBACKUP switch 12.5 Ω
Input voltage range at VBACKUP 2.73 3.75 V
Input voltage range at VSYSIN 2.73 3.75 V
VSYSIN threshold VSYSIN falling –3% 2.55 3% V
VSYSIN threshold VSYSIN rising –3% 2.65 3% V
VBACKUP threshold VBACKUP falling –3% 2.55 3% V
VBACKUP threshold VBACKUP falling –3% 2.65 3% V
VINLDO
I(q) Operating quiescent current Current per LDO into VINLDO 20 33 μA
I(SD) Shutdown current Total current for both LDOs into VINLDO,
VLDO = 0 V
0.1 1 μA
(1) Typical values are at TA = 25°C

7.9 Electrical Characteristics: VDCDC1 Step-Down Converter

VINDCDC1 = VINDCDC2 = VINDCDC3 = VCC = VINLDO = 3.6 V, VBACKUP = 3 V, TA = –40°C to +85°C (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT
VI Input voltage range, VINDCDC1 2.5 6 V
IO Maximum output current 1700 mA
rDS(on) P-channel MOSFET ON-resistance VINDCDC1 (VINDCDC13) = V(GS) = 3.6 V 125 261
Ilkg P-channel leakage current VINDCDC1 (VINDCDC13) = 6 V 2 μA
rDS(on) N-channel MOSFET ON-resistance VINDCDC1 (VINDCDC13) = V(GS) = 3.6 V 130 260
Ilkg N-channel leakage current V(DS) = 6 V 7 10 μA
Forward current limit
(P-channel and N-channel)
2.5 V < V(VINDCDC1) < 6 V 1.94 2.19 2.44 A
fS Oscillator frequency 1.95 2.25 2.55 MHz
Fixed output voltage FPWMDCDC1 = 0;
all VDCDC1
VINDCDC1 (VINDCDC13) = 2.5 V to 6 V;
0 mA ≤ IO  ≤ 1.7 A
–2% 2%
Fixed output voltage FPWMDCDC1 = 1;
all VDCDC1
VINDCDC1 (VINDCDC13) = 2.5 V to 6 V;
0 mA ≤ IO  ≤ 1.7 A
–1% 1%
Adjustable output voltage with resistor divider at DEFDCDC1; FPWMDCDC1 = 0 VINDCDC1 (VINDCDC13) = VDCDC1 + 0.5 V
(min 2.5 V) to 6 V; 0 mA ≤ IO  ≤ 1.7 A
–2% 2%
Adjustable output voltage with resistor divider at DEFDCDC1; FPWMDCDC1 = 1 VINDCDC1 (VINDCDC13) = VDCDC1 + 0.5 V
(min 2.5 V) to 6 V; 0 mA ≤ IO  ≤ 1.7 A
–1% 1%
Line regulation VINDCDC1 (VINDCDC13) = VDCDC1 + 0.3 V
(min 2.5 V) to 6 V; IO = 10 mA
0% V
Load regulation IO = 10 mA to 1700 mA 0.25% A
tStart Start-up time Time from active EN to start switching 145 175 200 μs
tRamp VOUT ramp-up time Time to ramp from 5% to 95% of VOUT 400 750 1000 μs
Internal resistance from L1 to GND 1
VDCDC1 discharge resistance DCDC1 discharge = 1 300 Ω
(1) Typical values are at TA = 25°C

7.10 Electrical Characteristics: VDCDC2 Step-Down Converter

VINDCDC1 = VINDCDC2 = VINDCDC3 (VINDCDC13) = VCC = VINLDO = 3.6 V, VBACKUP = 3 V, TA = –40°C to +85°C (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT
VI Input voltage range, VINDCDC2 2.5 6 V
IO Maximum output current VDCDC2 = 1.2V 1200 mA
VINDCDC2 = 3.7 V;
3.3 V – 1% ≤ VDCDC2  ≤ 3.3 V + 1%
1000
rDS(on) P-channel MOSFET ON-resistance VINDCDC2 = V(GS) = 3.6 V 140 300
Ilkg P-channel leakage current VINDCDC2 = 6 V 2 μA
rDS(on) N-channel MOSFET ON-resistance VINDCDC2 = V(GS) = 3.6 V 150 297
Ilkg N-channel leakage current V(DS) = 6 V 7 10 μA
ILIMF Forward current limit
(P-channel and N-channel)
2.5 V < VINDCDC2 < 6 V 1.74 1.94 2.12 A
fS Oscillator frequency 1.95 2.25 2.55 MHz
VDCDC2 Adjustable output voltage with resistor divider at DEFDCDC2; FPWMDCDC2 = 0 VINDCDC2 = VDCDC2 + 0.4 V (min 2.5 V) to 6 V; 0 mA ≤ IO  ≤ 1.2 A –2% 2%
VDCDC2 Adjustable output voltage with resistor divider at DEFDCDC2; FPWMDCDC2 = 1 VINDCDC2 = VDCDC2 + 0.4 V (min 2.5 V) to 6 V; 0 mA ≤ IO  ≤ 1.2 A –1% 1%
Line regulation VINDCDC2 = VDCDC2 + 0.3 V (min. 2.5 V) to 6 V; IO = 10 mA 0% V
Load regulation IO = 10 mA to 1.2 A 0.25% A
tStart Start-up time Time from active EN to start switching 145 175 200 µs
tRamp VOUT ramp-up time Time to ramp from 5% to 95% of VOUT 400 750 1000 μs
Internal resistance from L2 to GND 1
VDCDC2 discharge resistance DCDC2 discharge = 1 300 Ω
(1) Typical values are at TA = 25°C

7.11 Electrical Characteristics: VDCDC3 Step-Down Converter

VINDCDC1 = VINDCDC2 = VINDCDC3 (VINDCDC13) = VCC = VINLDO = 3.6 V, VBACKUP = 3 V, TA = –40°C to +85°C (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT
VI Input voltage range, VINDCDC3 2.5 6 V
IO Maximum output current DEFDCDC3 = GND 800 mA
VINDCDC3 (VINDCDC13) = 3.6 V;
3.3 V – 1% ≤ VDCDC3  ≤ 3.3 V + 1%
525
rDS(on) P-channel MOSFET ON-resistance VINDCDC3 (VINDCDC13) = V(GS) = 3.6 V 310 698
Ilkg P-channel leakage current VINDCDC3 (VINDCDC13) = 6 V 0.1 2 μA
rDS(on) N-channel MOSFET ON-resistance VINDCDC3 (VINDCDC13) = V(GS) = 3.6 V 220 503
Ilkg N-channel leakage current V(DS) = 6 V 7 10 μA
Forward current limit
(P-channel and N-channel)
2.5 V < VINDCDC3 (VINDCDC13) < 6 V 1.28 1.49 1.69 A
fS Oscillator frequency 1.95 2.25 2.55 MHz
Fixed output voltage FPWMDCDC3 = 0 VDCDC3 = 1.8 V; VINDCDC3 (VINDCDC13) =
2.5 V to 6 V; 0 mA ≤ IO  ≤ 0.8 A
–2% 2%
VDCDC3 = 3.3 V; VINDCDC3 (VINDCDC13) =
3.6 V to 6 V; 0 mA ≤ IO  ≤ 0.8 A
–1% 1%
Fixed output voltage FPWMDCDC3 = 1 VDCDC3 = 1.8 V; VINDCDC3 (VINDCDC13) =
2.5 V to 6 V; 0 mA ≤ IO  ≤ 0.8 A
–2% 2%
VDCDC3 = 3.3 V; VINDCDC3 (VINDCDC13) =
3.6 V to 6 V; 0 mA ≤ IO  ≤ 0.8 A
–1% 1%
Adjustable output voltage with resistor divider at DEFDCDC3 FPWMDCDC3 = 0 VINDCDC3 (VINDCDC13) = VDCDC3 + 0.5 V
(min 2.5 V) to 6 V; 0 mA ≤ IO  ≤ 800 mA
–2% 2%
Adjustable output voltage with resistor divider at DEFDCDC3; FPWMDCDC3 = 1 VINDCDC3 (VINDCDC13) = VDCDC3 + 0.5 V
(min 2.5 V) to 6 V; 0 mA ≤ IO  ≤ 800 mA
–1% 1%
Line regulation VINDCDC3 (VINDCDC13) = VDCDC3 + 0.3 V
(min 2.5 V) to 6 V; IO = 10 mA
0% V
Load regulation IO = 10 mA to 800 mA 0.25% A
tStart Start-up time Time from active EN to start switching 145 175 200 µs
tRamp VOUT ramp-up time Time to ramp from 5% to 95% of VOUT 400 750 1000 μs
Internal resistance from L3 to GND 1
VDCDC3 discharge resistance DCDC3 discharge = 1 300 Ω
(1) Typical values are at TA = 25°C

7.12 Timing Requirements

Operating conditions: VINDCDC1 = VINDCDC2 = VINDCDC3 = VCC = VINLDO = 2.5 V to 5.5 V, VBACKUP = 3.0 V,
TA = –40°C to +85°C
MIN MAX UNIT
fMAX Clock frequency 400 kHz
twH(HIGH) Clock high time 600 ns
twL(LOW) Clock low time 1300 ns
tR DATA and CLK rise time 300 ns
tF DATA and CLK fall time 300 ns
th(STA) Hold time (repeated) START condition (after this period the first clock pulse is generated) 600 ns
tsu(DATA) Setup time for repeated START condition 600 ns
th(DATA) Data input hold time 100 ns
tsu(DATA) Data input setup time 100 ns
tsu(STO) STOP condition setup time 600 ns
t(BUF) Bus free time 1300 ns
TPS650231 ser_if_time_lvs607.gif Figure 1. Serial I/F Timing Diagram
TPS650231 hot_timing_lvs670.gif Figure 2. HOT_RESET Timing (TPS650231RSB Only)
TPS650231 pu_pd_time_lvs670.gif Figure 3. Power-Up and Power-Down Timing
TPS650231 drs_timing_lvs670.gif Figure 4. DVS Timing

7.13 Typical Characteristics

Table 1. Table of Graphs

FIGURE
η Efficiency vs Output current Figure 5, Figure 6, Figure 7,
Figure 8, Figure 9, Figure 10
Output voltage vs Output current at 85°C Figure 11, Figure 12
Line transient response Figure 13, Figure 14, Figure 15
Load transient response Figure 16, Figure 17, Figure 18
VDCDC2 PFM operation Figure 19
VDCDC2 low-ripple PFM operation Figure 20
VDCDC2 PWM operation Figure 21
Start-up VDCDC1, VDCDC2 and VDCDC3 Figure 22
Start-up LDO1 and LDO2 Figure 23
Line transient response Figure 24, Figure 25, Figure 26
Load transient response Figure 27, Figure 28, Figure 29
TPS650231 tc1_lvsae3.gif Figure 5. DCDC1: Efficiency vs Output Current
TPS650231 tc3_lvsae3.gif Figure 7. DCDC2: Efficiency vs Output Current
TPS650231 tc5_lvsae3.gif Figure 9. DCDC3: Efficiency vs Output Current
TPS650231 vo_io1_lvsae3.gif Figure 11. DCDC2: Output Voltage
vs Output Current at 85°C
TPS650231 scope9_lvsae3.gif Figure 13. VDCDC1 Line Transient Response
TPS650231 scope11_lvsae3.gif Figure 15. VDCDC3 Line Transient Response
TPS650231 vdcdc2_ldtr_lvsae3.gif Figure 17. VDCDC2 Load Transient Response
TPS650231 vdcdc2_vo1_lvsae3.gif Figure 19. VDCDC2 Output Voltage Ripple
TPS650231 vdcdc2_vo3_lvs670.gif Figure 21. VDCDC2 Output Voltage Ripple
TPS650231 startup_ldo_lvs607.gif Figure 23. Start-Up LDO1 and LDO2
TPS650231 ldo2_lt_lvs613.gif Figure 25. LDO2 Line Transient Response
TPS650231 ldo1_ldtr_lvsae3.gif Figure 27. LDO1 Load Transient Response
TPS650231 vrtc_ld_lvs613.gif Figure 29. VRTC Load Transient Response
TPS650231 tc2_lvsae3.gif Figure 6. DCDC1: Efficiency vs Output Current
TPS650231 tc4_lvsae3.gif Figure 8. DCDC2: Efficiency vs Output Current
TPS650231 tc6_lvsae3.gif Figure 10. DCDC3: Efficiency vs Output Current
TPS650231 vo_io2_lvsae3.gif Figure 12. DCDC3: Output Voltage
vs Output Current at 85°C
TPS650231 scope10_lvsae3.gif Figure 14. VDCDC2 Line Transient Response
TPS650231 vdcdc1_ldtr_lvsae3.gif Figure 16. VDCDC1 Load Transient Response
TPS650231 vdcdc3_ldtr_lvsae3.gif Figure 18. VDCDC3 Load Transient Response
TPS650231 vdcdc2_vo2_lvs670.gif Figure 20. VDCDC2 Output Voltage Ripple
TPS650231 startup_vdc_lvs670.gif Figure 22. Start-Up VDCDC1, VDCDC2, and VDCDC3
TPS650231 ldo1_lt_lvsae3.gif Figure 24. LDO1 Line Transient Response
TPS650231 vrtc_lt_lvs613.gif Figure 26. VRTC Line Transient Response
TPS650231 ldo2_ldtr_lvsae3.gif Figure 28. LDO2 Load Transient Response