SLVSAW6H June   2011  – November 2024 LP2951-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics (Both Legacy and New Chip)
    6. 5.6 Timing Requirements (New Chip only)
    7. 5.7 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Output Enable
      2. 6.3.2 Dropout Voltage
      3. 6.3.3 Current Limit
      4. 6.3.4 Undervoltage Lockout (UVLO)
      5. 6.3.5 Thermal Shutdown
    4. 6.4 Device Functional Modes
      1. 6.4.1 Shutdown Mode
  8. Application and Implementation
    1. 7.1 Application Information
      1. 7.1.1 Reverse Current
      2. 7.1.2 Input and Output Capacitor Requirements
      3. 7.1.3 Estimating Junction Temperature
      4. 7.1.4 Power Dissipation (PD)
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
        1. 7.2.1.1 Recommended Capacitor Types
          1. 7.2.1.1.1 Recommended Capacitors (Legacy Chip)
            1. 7.2.1.1.1.1 ESR Range (Legacy Chip)
          2. 7.2.1.1.2 Recommended Capacitors (New Chip)
      2. 7.2.2 Detailed Design Procedure
        1. 7.2.2.1 Feedback Resistor Selection
        2. 7.2.2.2 Feedforward Capacitor
      3. 7.2.3 Application Curves
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
      2. 7.4.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 Device Support
      1. 8.1.1 Development Support
      2. 8.1.2 Device Nomenclature
    2. 8.2 Documentation Support
      1. 8.2.1 Related Documentation
    3. 8.3 Receiving Notification of Documentation Updates
    4. 8.4 Support Resources
    5. 8.5 Trademarks
    6. 8.6 Electrostatic Discharge Caution
    7. 8.7 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Dropout Voltage

Dropout voltage (VDO) is defined as VIN – VOUT at the rated output current (IRATED), where the pass transistor is fully on. VIN is the input voltage, VOUT is the output voltage, and IRATED is the maximum IL listed in the Recommended Operating Conditions table. At this operating point, the pass transistor is driven fully on. Dropout voltage indirectly specifies a minimum input voltage greater than the nominal programmed output voltage where the output voltage is expected to stay in regulation. If the input voltage falls to less than the nominal output regulation, then the output voltage falls as well.

For a CMOS regulator, the dropout voltage is determined by the drain-source, on-state resistance (RDS(ON)) of the pass transistor. Therefore, if the linear regulator operates at less than the rated current, the dropout voltage for that current scales accordingly. The following equation calculates the RDS(ON) of the device.

Equation 1. LP2951-Q1