SLVSDD1G December   2017  – June 2024 TPS62800 , TPS62801 , TPS62802 , TPS62806 , TPS62807 , TPS62808

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Smart Enable and Shutdown (EN)
      2. 7.3.2 Soft Start
      3. 7.3.3 VSEL/MODE Pin
        1. 7.3.3.1 Output Voltage Selection (R2D Converter)
        2. 7.3.3.2 Mode Selection — Power Save Mode and Forced PWM Operation
      4. 7.3.4 Undervoltage Lockout (UVLO)
      5. 7.3.5 Switch Current Limit and Short Circuit Protection
      6. 7.3.6 Thermal Shutdown
      7. 7.3.7 Output Voltage Discharge
    4. 7.4 Device Functional Modes
      1. 7.4.1 Power Save Mode Operation
      2. 7.4.2 Forced PWM Mode Operation
      3. 7.4.3 100% Mode Operation
      4. 7.4.4 Optimized Transient Performance from PWM-to-PFM Mode Operation
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Custom Design With WEBENCH® Tools
        2. 8.2.2.2 Inductor Selection
        3. 8.2.2.3 Output Capacitor Selection
        4. 8.2.2.4 Input Capacitor Selection
      3. 8.2.3 Application Curves
    3. 8.3 System Examples
    4. 8.4 Power Supply Recommendations
    5. 8.5 Layout
      1. 8.5.1 Layout Guidelines
      2. 8.5.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Third-Party Products Disclaimer
      2. 9.1.2 Development Support
        1. 9.1.2.1 Custom Design With WEBENCH® Tools
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information
    1. 11.1 Mechanical Data

Description

The TPS6280x device family is a step-down converter with 2.3µA typical quiescent current featuring the highest efficiency and smallest design size. TI's DCS-Control topology enables the device to operate with tiny inductors and capacitors with a switching frequency up to 4MHz. At light load conditions, the device seamlessly enters power save mode to reduce switching cycles and maintain high efficiency.

Connecting the VSEL/MODE pin to GND selects a fixed output voltage. With only one external resistor connected to VSEL/MODE pin, 16 internally set output voltages can be selected. An integrated R2D (resistor-to-digital) converter reads out the external resistor and sets the output voltage. The same device part number can be used for different applications and voltage rails just by changing a single resistor. Furthermore, the internally set output voltage provides better accuracy compared to a traditional external resistor divider network. After the device has started up, the DC/DC converter enters forced PWM mode by applying a high level at the VSEL/MODE pin. In this operating mode, the device runs at a typical 4MHz or 1.5MHz switching frequency, enabling lowest output voltage ripple and highest efficiency. The TPS6280x device series comes in a tiny 6-pin WCSP package with 0.35mm pitch.

Device Information
PART NUMBER(3) PACKAGE(1) PACKAGE SIZE(2)
TPS62800 YKA (DSBGA, 6) 1.05 mm × 0.70 mm
TPS62801
TPS62802
TPS62806
TPS62807
For more information, see Section 11.
The package size (length × width) is a nominal value and includes pins, where applicable.
TPS62800 TPS62801 TPS62802 TPS62806 TPS62807 TPS62808 Typical ApplicationTypical Application
TPS62800 TPS62801 TPS62802 TPS62806 TPS62807 TPS62808 Efficiency Versus
                            IOUT at 1.2VOUTEfficiency Versus IOUT at 1.2VOUT