SLVSER4B May   2020  – January 2022 TPS92200

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7.     Switching Characteristics
    8. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Peak-Current-Mode PWM Control
      2. 7.3.2 Setting LED Current
      3. 7.3.3 Internal Soft Start
      4. 7.3.4 Input Undervoltage Lockout
      5. 7.3.5 Bootstrap Regulator
      6. 7.3.6 Maximum Duty Cycle
      7. 7.3.7 Overcurrent Protection
        1. 7.3.7.1 High-Side MOSFET Overcurrent Protection
        2. 7.3.7.2 Low-Side MOSFET Sourcing Overcurrent Protection
        3. 7.3.7.3 Low-Side MOSFET Sinking Overcurrent Protection
      8. 7.3.8 Fault Protection
        1. 7.3.8.1 LED Open-Load Protection
        2. 7.3.8.2 LED+ and LED– Short Circuit Protection
        3. 7.3.8.3 LED+ Short Circuit to GND Protection
        4. 7.3.8.4 Sense-Resistor Open-Load Protection
        5. 7.3.8.5 Sense Resistor Short Circuit-to-GND Protection
        6. 7.3.8.6 Overvoltage Protection
        7. 7.3.8.7 Thermal Shutdown
    4. 7.4 Device Functional Modes
      1. 7.4.1 Enable and Disable the Device
      2. 7.4.2 TPS92200D1 PWM Dimming
      3. 7.4.3 TPS92200D1 Analog Dimming
      4. 7.4.4 TPS92200D2 Analog Dimming
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 TPS92200D1 12-V Input, 1.5-A, 2-Piece IR LED Driver With Analog Dimming
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Inductor Selection
          2. 8.2.1.2.2 Input Capacitor Selection
          3. 8.2.1.2.3 Output Capacitor Selection
            1. 8.2.1.2.3.1 Sense Resistor Selection
              1. 8.2.1.2.3.1.1 Other External Components Selection
        3. 8.2.1.3 Application Curves
      2. 8.2.2 TPS92200D1 24-V Input, 1-A, 6-Piece WLED Driver With PWM Dimming
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
          1. 8.2.2.2.1 Inductor Selection
          2. 8.2.2.2.2 Input Capacitor Selection
          3. 8.2.2.2.3 Output Capacitor Selection
            1. 8.2.2.2.3.1 Sense Resistor Selection
              1. 8.2.2.2.3.1.1 Other External Components Selection
        3. 8.2.2.3 Application Curves
      3. 8.2.3 5-V Input, 1-A, 1-Piece IR LED Driver With TPS92200D2
        1. 8.2.3.1 Design Requirements
        2. 8.2.3.2 Detailed Design Procedure
          1. 8.2.3.2.1 Inductor Selection
          2. 8.2.3.2.2 Input Capacitor Selection
          3. 8.2.3.2.3 Output Capacitor Selection
            1. 8.2.3.2.3.1 Sense Resistor Selection
              1. 8.2.3.2.3.1.1 Other External Components Selection
        3. 8.2.3.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Receiving Notification of Documentation Updates
    2. 11.2 Support Resources
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

LED+ and LED– Short Circuit Protection

When LED+ and LED– are shorted, VFB is higher than internal reference voltage, VREF, and internal error amplifier output voltage VCOMP is driven low and clamped. The high-side MOSFET is forced to turn on with the minimum on-time each cycle, tMIN_ON. In this case, if the output voltage is too low, the inductor current cannot balance in a cycle, causing current runaway. Finally, the inductor current is clamped by low-side MOSFET sourcing current limit ILIM_LS_SOUR which is 3-A typical. If VFB rises higher than VFB_OVP, the device starts the auto-retry timer. After the counter, tRETRY_ON, expires, the device shuts down and starts another counter, tRETRY_OFF. During the shutdown period, both high-side and low-side MOSFETs are turned off. After the hiccup timer expires, TPS92200 restarts again. The device repeats these behaviors until the failure condition is removed. During the auto-retry mode, the device is also protected by the overcurrent limits of both high-side power switch and low-side power switch.