SLVSFO5D April   2020  – January 2023 TLV841

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Requirements
    7. 7.7 Timing Diagrams
    8. 7.8 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Input Voltage (VDD)
        1. 8.3.1.1 VDD Hysteresis
        2. 8.3.1.2 VDD Transient Immunity
      2. 8.3.2 SENSE Input (TLV841S)
        1. 8.3.2.1 SENSE Hysteresis
        2. 8.3.2.2 Immunity to SENSE Pin Voltage Transients
      3. 8.3.3 User-Programmable Reset Time Delay for TLV841C only
      4. 8.3.4 Manual Reset (MR) Input for TLV841M only
      5. 8.3.5 Output Logic
        1. 8.3.5.1 RESET Output, Active-Low
        2. 8.3.5.2 RESET Output, Active-High
    4. 8.4 Device Functional Modes
      1. 8.4.1 Normal Operation (VDD > VPOR)
      2. 8.4.2 Below Power-On-Reset (VDD < VPOR)
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curves: TLV841EVM
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Nomenclature
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Receiving Notification of Documentation Updates
    4. 12.4 Support Resources
    5. 12.5 Trademarks
    6. 12.6 Electrostatic Discharge Caution
    7. 12.7 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Layout Guidelines

Make sure that the connection to the VDD pin is low impedance. Good analog design practice recommends placing a minimum 0.1 µF ceramic capacitor as near as possible to the VDD pin. If a capacitor is not connected to the CT pin (TLV841C), then minimize parasitic capacitance on this pin so the rest time delay is not adversely affected.

  • Make sure that the connection to the VDD pin is low impedance. Good analog design practice is to place a greater than 0.1 µF ceramic capacitor as near as possible to the VDD pin.
  • If a CCT_EXT capacitor is used (TLV841C), place the capacitor as close as possible to the CT pin. If the CT pin is left unconnected, make sure to minimize the amount of parasitic capacitance on the pin to less than 5 pF.
  • If a SENSE capacitor (CSENSE) is used (TLV841S), place the capacitor as close as possible to the SENSE pin to further improve the noise immunity on the SENSE pin. Placing a 10 nF to 100 nF capacitor between the SENSE pin and GND can reduce the sensitivity to sensitivity to transient voltages on the monitored signal.
  • Place the pull-up resistors on RESET pin as close to the pin as possible.