SLVSGC5B January   2023  – May 2024 TPS62870 , TPS62871 , TPS62872 , TPS62873

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Description (continued)
  6. Device Options
  7. Pin Configuration and Functions
  8. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings_Catalog
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 I2C Interface Timing Characteristics
    7. 7.7 Timing Requirements
    8. 7.8 Typical Characteristics
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Fixed-Frequency DCS Control Topology
      2. 8.3.2  Forced PWM and Power Save Modes
      3. 8.3.3  Precise Enable
      4. 8.3.4  Start-Up
      5. 8.3.5  Switching Frequency Selection
      6. 8.3.6  Output Voltage Setting
        1. 8.3.6.1 Output Voltage Range
        2. 8.3.6.2 Output Voltage Setpoint
        3. 8.3.6.3 Non-Default Output Voltage Setpoint
        4. 8.3.6.4 Dynamic Voltage Scaling
      7. 8.3.7  Compensation (COMP)
      8. 8.3.8  Mode Selection and Clock Synchronization (MODE/SYNC)
      9. 8.3.9  Spread Spectrum Clocking (SSC)
      10. 8.3.10 Output Discharge
      11. 8.3.11 Undervoltage Lockout (UVLO)
      12. 8.3.12 Overvoltage Lockout (OVLO)
      13. 8.3.13 Overcurrent Protection
        1. 8.3.13.1 Cycle-by-Cycle Current Limiting
        2. 8.3.13.2 Hiccup Mode
        3. 8.3.13.3 Current Limit Mode
      14. 8.3.14 Power Good (PG)
        1. 8.3.14.1 Standalone or Primary Device Behavior
        2. 8.3.14.2 Secondary Device Behavior
      15. 8.3.15 Remote Sense
      16. 8.3.16 Thermal Warning and Shutdown
      17. 8.3.17 Stacked Operation
    4. 8.4 Device Functional Modes
      1. 8.4.1 Power-On Reset
      2. 8.4.2 Undervoltage Lockout
      3. 8.4.3 Standby
      4. 8.4.4 On
    5. 8.5 Programming
      1. 8.5.1 Serial Interface Description
      2. 8.5.2 Standard, Fast, Fast Mode Plus Protocol
      3. 8.5.3 I2C Update Sequence
      4. 8.5.4 I2C Register Reset
  10. Register Map
  11. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
        1. 10.2.2.1 Selecting the Inductor
        2. 10.2.2.2 Selecting the Input Capacitors
        3. 10.2.2.3 Selecting the Compensation Resistor
        4. 10.2.2.4 Selecting the Output Capacitors
        5. 10.2.2.5 Selecting the Compensation Capacitor, CC
        6. 10.2.2.6 Selecting the Compensation Capacitor, CC2
      3. 10.2.3 Application Curves
    3. 10.3 Best Design Practices
    4. 10.4 Power Supply Recommendations
    5. 10.5 Layout
      1. 10.5.1 Layout Guidelines
      2. 10.5.2 Layout Example
  12. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Support Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  13. 12Revision History
  14. 13Mechanical, Packaging, and Orderable Information

Layout Guidelines

Achieving the performance the TPS6287x devices are capable of requires proper PDN and PCB design. TI therefore recommends the user perform a power integrity analysis on the design. There are a number of commercially available power integrity software tools, and the user can use these tools to model the effects on performance of the PCB layout and passive components.

In addition to the use of power integrity tools, TI recommends the following basic principles:

  • Place the input capacitors close to the VIN and GND pins. Position the input capacitors in order of increasing size, starting with the smallest capacitors closest to the VIN and GND pins. Use an identical layout for both VIN-GND pin pairs of the package, to gain maximum benefit from the butterfly configuration.
  • Place the inductor close to the device and keep the SW node small.
  • Connect the exposed thermal pad and the GND pins of the device together. Use multiple thermal vias to connect the exposed thermal pad of the device to one or more ground planes (TI's EVM uses nine 150µm thermal vias).
  • Use multiple power and ground planes.
  • Route the VOSNS and GOSNS remote sense lines as a differential pair and connect them to the lowest-impedance point of the PDN. If the desired connection point is not the lowest impedance point of the PDN, optimize the PDN until it is. Do not route the VOSNS and GOSNS close to any of the switch nodes.
  • Connect the compensation components between VOSNS and GOSNS. Do not connect the compensation components directly to power ground.
  • Use multiple vias to connect each capacitor pad to the power and ground planes (TI's EVM typically uses four vias per pad).
  • Use plenty of stitching vias to make sure of a low impedance connection between different power and ground planes.
  • Make sure that the capacitance located at the load is at least twice the amount of the capacitance located at the device.