SLVSGS7D July   2023  – June 2024 TPSM8287A06 , TPSM8287A10 , TPSM8287A12 , TPSM8287A15

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Options
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 I2C Interface Timing Characteristics
    7. 6.7 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Fixed-Frequency DCS-Control Topology
      2. 7.3.2  Forced-PWM and Power-Save Modes
      3. 7.3.3  Precise Enable
      4. 7.3.4  Start-Up
      5. 7.3.5  Switching Frequency Selection
      6. 7.3.6  Output Voltage Setting
        1. 7.3.6.1 Output Voltage Setpoint
        2. 7.3.6.2 Output Voltage Range
        3. 7.3.6.3 Non-Default Output Voltage Setpoint
        4. 7.3.6.4 Dynamic Voltage Scaling (DVS)
      7. 7.3.7  Compensation (COMP)
      8. 7.3.8  Mode Selection / Clock Synchronization (MODE/SYNC)
      9. 7.3.9  Spread Spectrum Clocking (SSC)
      10. 7.3.10 Output Discharge
      11. 7.3.11 Undervoltage Lockout (UVLO)
      12. 7.3.12 Overvoltage Lockout (OVLO)
      13. 7.3.13 Overcurrent Protection
        1. 7.3.13.1 Cycle-by-Cycle Current Limiting
        2. 7.3.13.2 Hiccup Mode
        3. 7.3.13.3 Current-Limit Mode
      14. 7.3.14 Power Good (PG)
        1. 7.3.14.1 Power-Good Standalone, Primary Device Behavior
        2. 7.3.14.2 Power-Good Secondary Device Behavior
      15. 7.3.15 Remote Sense
      16. 7.3.16 Thermal Warning and Shutdown
      17. 7.3.17 Stacked Operation
    4. 7.4 Device Functional Modes
      1. 7.4.1 Power-On Reset (POR)
      2. 7.4.2 Undervoltage Lockout
      3. 7.4.3 Standby
      4. 7.4.4 On
    5. 7.5 Programming
      1. 7.5.1 Serial Interface Description
      2. 7.5.2 Standard-, Fast-, Fast-Mode Plus Protocol
      3. 7.5.3 I2C Update Sequence
      4. 7.5.4 I2C Register Reset
  9. Device Registers
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Selecting the Input Capacitors
        2. 9.2.2.2 Selecting the Target Loop Bandwidth
        3. 9.2.2.3 Selecting the Compensation Resistor
        4. 9.2.2.4 Selecting the Output Capacitors
        5. 9.2.2.5 Selecting the Compensation Capacitor, CComp1
        6. 9.2.2.6 Selecting the Compensation Capacitor, CComp2
      3. 9.2.3 Application Curves
    3. 9.3 Typical Application Using Four TPSM8287Axx in Parallel Operation
      1. 9.3.1 Design Requirements
      2. 9.3.2 Detailed Design Procedure
        1. 9.3.2.1 Selecting the Input Capacitors
        2. 9.3.2.2 Selecting the Target Loop Bandwidth
        3. 9.3.2.3 Selecting the Compensation Resistor
        4. 9.3.2.4 Selecting the Output Capacitors
        5. 9.3.2.5 Selecting the Compensation Capacitor, CComp1
        6. 9.3.2.6 Selecting the Compensation Capacitor, CComp2
      3. 9.3.3 Application Curves
    4. 9.4 Power Supply Recommendations
    5. 9.5 Layout
      1. 9.5.1 Layout Guidelines
      2. 9.5.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 Third-Party Products Disclaimer
    2. 10.2 Documentation Support
      1. 10.2.1 Related Documentation
    3. 10.3 Receiving Notification of Documentation Updates
    4. 10.4 Support Resources
    5. 10.5 Trademarks
    6. 10.6 Electrostatic Discharge Caution
    7. 10.7 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Output Voltage Range

The device has four different output voltage ranges. The VRANGE[1:0] bits in the CONTROL2 register control which range is active (see Table 7-3). The default output voltage range is determined by the VSETx pins.

Table 7-3 Voltage Ranges
VRANGE[1:0]Voltage Range
0b000.4 V to 0.71875 V in 1.25-mV steps
0b010.4 V to 1.0375 V in 2.5-mV steps
0b100.4 V to 1.675 V in 5-mV steps
0b110.8 V to 3.35 V in 10-mV steps

Every change to the VRANGE[1:0] bits must be followed by a write to the VSET register – even if the value of the VSET[7:0] bits does not change. This sequence is necessary for the device to start to use the new voltage range.

When switching to or from the 0.8-V to 3.35-V range, the device switches the internal reference between 0.4 V and 0.8 V. To avoid any output voltage over or undershoot that can occur during the change, the VRANGE change must be done at an output voltage that occurs in both the new range and old range and the VSET[7:0] bits must set the same output voltage in both the new range and old range.