SLVSGT9B February   2023  – June 2024 TPS25948

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Switching Characteristics
    8. 6.8 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Undervoltage Lockout (UVLO and UVP)
      2. 7.3.2 Overvoltage Lockout (OVLO)
      3. 7.3.3 Inrush Current, Overcurrent, and Short Circuit Protection
        1. 7.3.3.1 Slew Rate (dVdt) and Inrush Current Control
        2. 7.3.3.2 Active Current Limiting
        3. 7.3.3.3 Short-Circuit Protection
      4. 7.3.4 Analog Load Current Monitor
      5. 7.3.5 Reverse Current Protection
      6. 7.3.6 Overtemperature Protection (OTP)
      7. 7.3.7 Fault Response and Indication (FLT)
      8. 7.3.8 Supply Good Indication (SPLYGD/SPLYGD)
    4. 7.4 Device Functional Modes
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Single Device, Self-Controlled
    3. 8.3 Typical Application
      1. 8.3.1 Design Requirements
      2. 8.3.2 Detailed Design Procedure
        1. 8.3.2.1 Setting Overvoltage Threshold
        2. 8.3.2.2 Setting Output Voltage Rise Time (tR)
        3. 8.3.2.3 Setting Overcurrent Threshold (ILIM)
        4. 8.3.2.4 Setting Overcurrent Blanking Interval (tITIMER)
      3. 8.3.3 Application Curves
    4. 8.4 Active ORing
    5. 8.5 Priority Power MUXing
    6. 8.6 Parallel Operation
    7. 8.7 USB PD Port Protection
    8. 8.8 Power Supply Recommendations
      1. 8.8.1 Transient Protection
      2. 8.8.2 Output Short-Circuit Measurements
    9. 8.9 Layout
      1. 8.9.1 Layout Guidelines
      2. 8.9.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Active Current Limiting

The TPS25948xx responds to output overcurrent conditions by actively limiting the current after a user adjustable transient fault blanking interval. When the load current exceeds the set overcurrent threshold (ILIM) set by the ILM pin resistor (RILM), but stays lower than the short-circuit threshold (2 × ILIM or IFFT depending on the variant), the device starts discharging the ITIMER pin capacitor using an internal 1.9-μA pulldown current. If the load current drops below the overcurrent threshold before the ITIMER capacitor (CITIMER) discharges by ΔVITIMER, the ITIMER is reset by pulling it up to VINT internally and the current limit action is not engaged. This allows short load transient pulses to pass through the device without getting current limited. If the overcurrent condition persists, the CITIMER continues to discharge and once it discharges by ΔVITIMER, the current limit starts regulating the HFET to actively limit the current to the set overcurrent threshold (ILIM). At the same time, the CITIMER is charged up to VINT again so that it is at its default state before the next overcurrent event. This ensures the full blanking timer interval is provided for every overcurrent event. Equation 5 can be used to calculate the RILM value for a desired overcurrent threshold.

Equation 5. RILM  (Ω) = 4834ILIM (A)
Note:
  1. The TPS259480x/2x variants allow a maximum transient load current up to 2 × ILIM for the ITIMER duration. The TPS259481x variants allow a maximum transient load current up to IFFT for the ITIMER duration.
  2. Leaving the ILM pin Open sets the current limit to zero and results in the part entering current limit or performing a fast-trip with the slightest amount of loading at the output.
  3. The current limit circuit employs a foldback mechanism. The current limit threshold in the foldback region (0 V < VOUT < VFB) is lower than the steady state current limit threshold (ILIM).
  4. Shorting the ILM pin to ground at any point during normal operation is detected as a fault and the part shuts down. There’s a minimum current (IFLT) which the part allows in this condition before the pin short condition is detected.

The duration for which transients are allowed can be adjusted using an appropriate capacitor value from ITIMER pin to ground. The CITIMER value needed to set the desired transient overcurrent blanking interval can be calculated using Equation 6.

Equation 6. CITIMER (nF) = tITIMER (ms) × IITIMER (µA)ΔVITIMER (V)
TPS25948 TPS25948xx Active Current Limit ResponseFigure 7-7 TPS25948xx Active Current Limit Response
Note:
  1. Leave the ITIMER pin open to allow the part to limit the current with the minimum possible delay.
  2. Shorting the ITIMER pin to ground results in minimum overcurrent response delay (similar to ITIMER pin open condition), but increases the device current consumption. This is not a recommended mode of operation.
  3. Active current limiting based on RILM is active during startup. In case the startup current exceeds ILIM, the device regulates the current to the set limit. However, during startup the current limit is engaged without waiting for the ITIMER delay.
  4. Increasing the CITIMER value extends the overcurrent blanking interval, but it also extends the time needed for the CITIMER to recharge up to VINT. If the next overcurrent event occurs before the CITIMER is recharged fully, it will take lesser time to discharge to the ITIMER expiry threshold, thereby providing a shorter blanking interval than intended.

During active current limit, the output voltage will drop resulting in increased device power dissipation across the HFET. If the device internal temperature (TJ) exceeds the thermal shutdown threshold (TSD), the HFET is turned off. Once the part shuts down due to TSD fault, it would either stay latched off (TPS25948xL variants) or restart automatically after a fixed delay (TPS25948xA variants). See Overtemperature Protection (OTP) for more details on device response to overtemperature.