SLVSGW6 August   2024 TPS55287

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 I2C Timing Characteristics
    7. 5.7 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1  VCC Power Supply
      2. 6.3.2  EXTVCC Power Supply
      3. 6.3.3  Operation Mode Setting
      4. 6.3.4  Input Undervoltage Lockout
      5. 6.3.5  Enable and Programmable UVLO
      6. 6.3.6  Soft Start
      7. 6.3.7  Shutdown and Load Discharge
      8. 6.3.8  Switching Frequency
      9. 6.3.9  Switching Frequency Dithering
      10. 6.3.10 Inductor Current Limit
      11. 6.3.11 Internal Charge Path
      12. 6.3.12 Output Voltage Setting
      13. 6.3.13 Output Current Monitoring and Cable Voltage Droop Compensation
      14. 6.3.14 Output Current Limit
      15. 6.3.15 Overvoltage Protection
      16. 6.3.16 Output Short Circuit Protection
      17. 6.3.17 Thermal Shutdown
    4. 6.4 Device Functional Modes
      1. 6.4.1 PWM Mode
      2. 6.4.2 Power Save Mode
    5. 6.5 Programming
      1. 6.5.1 Data Validity
      2. 6.5.2 START and STOP Conditions
      3. 6.5.3 Byte Format
      4. 6.5.4 Acknowledge (ACK) and Not Acknowledge (NACK)
      5. 6.5.5 Target Address and Data Direction Bit
      6. 6.5.6 Single Read and Write
      7. 6.5.7 Multiread and Multiwrite
    6. 6.6 Register Maps
      1. 6.6.1 REF Register (Address = 0h, 1h)
      2. 6.6.2 IOUT_LIMIT Register (Address = 2h) [reset = 11100100h]
      3. 6.6.3 VOUT_SR Register (Address = 3h) [reset = 00000001h]
      4. 6.6.4 VOUT_FS Register (Address = 4h) [reset = 00000011h]
      5. 6.6.5 CDC Register (Address = 5h) [reset = 11100000h]
      6. 6.6.6 MODE Register (Address = 6h) [reset = 00100000h]
      7. 6.6.7 STATUS Register (Address = 7h) [reset = 00000011h]
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
        1. 7.2.2.1 Switching Frequency
        2. 7.2.2.2 Output Voltage Setting
        3. 7.2.2.3 Inductor Selection
        4. 7.2.2.4 Input Capacitor
        5. 7.2.2.5 Output Capacitor
        6. 7.2.2.6 Output Current Limit
        7. 7.2.2.7 Loop Stability
      3. 7.2.3 Application Curves
  9. Power Supply Recommendations
  10. Layout
    1. 9.1 Layout Guidelines
    2. 9.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 Third-Party Products Disclaimer
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Overview

The TPS55287 is a 4A buck-boost DC-to-DC converter with the four integrated MOSFETs. The TPS55287 can operate over a wide range of 3.0V to 36V input voltage and 0.8V to 22V output voltage. The device can smoothly transition amongst buck mode, buck-boost mode, and boost mode according to the input voltage and the set output voltage. The TPS55287 operates in buck mode when the input voltage is greater than the output voltage and in boost mode when the input voltage is less than the output voltage. When the input voltage is close to the output voltage, the TPS55287 alternates between one-cycle buck mode and one-cycle boost mode.

The TPS55287 uses an average current mode control scheme. Current mode control provides simplified loop compensation, rapid response to the load transients, and inherent line voltage rejection. An error amplifier compares the feedback voltage with the internal reference voltage. The output of the error amplifier determines the average inductor current.

An internal oscillator can be configured to operate over a wide range of frequency from 200kHz to 2.2MHz. The internal oscillator can also synchronize to an external clock applied to the DITH/SYNC pin. To minimize EMI, the TPS55287 can dither the switching frequency at ±7% of the set frequency.

The TPS55287 works in fixed-frequency PWM mode at moderate to heavy load currents. In light load condition, the TPS55287 can be configured to automatically transition to PFM mode or be forced in PWM mode by setting the corresponding bit in an internal register.

The output voltage of the TPS55287 is adjustable by setting the internal register through I2C interface. An internal 11-bit DAC adjusts the reference voltage related to the value written into the REF register. The device can also limit the output current by placing a current sense resistor in the output path. These two functions support the programmable power supply (PPS) feature of the USB PD.

The TPS55287 provides average inductor current limit of 4A typically. In addition, the device provides cycle-by-cycle peak inductor current limit during transient to protect the device against overcurrent condition beyond the capability of the device.

A precision voltage threshold of 1.23V with 5µA sourcing current at the EN/UVLO pin supports programmable input undervoltage lockout (UVLO) with hysteresis. The output overvoltage protection (OVP) feature turns off the high-side FETs to prevent damage to the devices powered by the TPS55287.

The device provides a hiccup mode option to reduce the heating in the power components when the output short circuit happens. When the hiccup mode is enabled, the TPS55287 turns off for 76ms and restarts at soft-start–up.