SLVSHD4 October   2024 DRV8376

ADVANCE INFORMATION  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 SPI Timing Requirements
    7. 6.7 SPI Slave Mode Timings
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Output Stage
      2. 7.3.2  Control Modes
        1. 7.3.2.1 6x PWM Mode (PWM_MODE = 00b or 01b or MODE_SR Pin Tied to AGND or in Hi-Z)
        2. 7.3.2.2 3x PWM Mode (xPWM_MODE = 10b or 11b or MODE_SR Pin is Connected to GVDD or to GVDD with RMODE)
      3. 7.3.3  Device Interface Modes
        1. 7.3.3.1 Serial Peripheral Interface (SPI)
        2. 7.3.3.2 Hardware Interface
      4. 7.3.4  AVDD and GVDD Linear Voltage Regulator
      5. 7.3.5  Charge Pump
      6. 7.3.6  Slew Rate Control
      7. 7.3.7  Cross Conduction (Dead Time)
      8. 7.3.8  Propagation Delay
      9. 7.3.9  Pin Diagrams
        1. 7.3.9.1 Logic Level Input Pin (Internal Pulldown)
        2. 7.3.9.2 Logic Level Input Pin (Internal Pullup)
        3. 7.3.9.3 Open Drain Pin
        4. 7.3.9.4 Push Pull Pin
        5. 7.3.9.5 Four Level Input Pin
      10. 7.3.10 Current Sense Amplifiers
        1. 7.3.10.1 Current Sense Amplifier Operation
      11. 7.3.11 Active Demagnetization
        1. 7.3.11.1 Automatic Synchronous Rectification Mode (ASR Mode)
          1. 7.3.11.1.1 Automatic Synchronous Rectification in Commutation
          2. 7.3.11.1.2 Automatic Synchronous Rectification in PWM Mode
        2. 7.3.11.2 Automatic Asynchronous Rectification Mode (AAR Mode)
      12. 7.3.12 Cycle-by-Cycle Current Limit
        1. 7.3.12.1 Cycle by Cycle Current Limit with 100% Duty Cycle Input
      13. 7.3.13 Protections
        1. 7.3.13.1 VM Supply Undervoltage Lockout (RESET)
        2. 7.3.13.2 AVDD Undervoltage Protection (AVDD_UV)
        3. 7.3.13.3 GVDD Undervoltage Lockout (GVDD_UV)
        4. 7.3.13.4 VCP Charge Pump Undervoltage Lockout (CPUV)
        5. 7.3.13.5 Overvoltage Protections (OV)
        6. 7.3.13.6 Overcurrent Protection (OCP)
          1. 7.3.13.6.1 OCP Latched Shutdown (OCP_MODE = 00b)
          2. 7.3.13.6.2 OCP Automatic Retry (OCP_MODE = 01b)
          3. 7.3.13.6.3 OCP Report Only (OCP_MODE = 10b)
          4. 7.3.13.6.4 OCP Disabled (OCP_MODE = 11b)
        7. 7.3.13.7 Thermal Warning (OTW)
        8. 7.3.13.8 Thermal Shutdown (OTS)
    4. 7.4 Device Functional Modes
      1. 7.4.1 Functional Modes
        1. 7.4.1.1 Sleep Mode
        2. 7.4.1.2 Operating Mode
        3. 7.4.1.3 Fault Reset (CLR_FLT or nSLEEP Reset Pulse)
      2. 7.4.2 DRVOFF functionality
    5. 7.5 SPI Communication
      1. 7.5.1 Programming
        1. 7.5.1.1 SPI Format
    6. 7.6 Register Map
      1. 7.6.1 STATUS Registers
      2. 7.6.2 CONTROL Registers
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Power Supply Recommendations
      1. 8.2.1 Bulk Capacitance
    3. 8.3 Layout
      1. 8.3.1 Layout Guidelines
      2. 8.3.2 Layout Example
      3. 8.3.3 Thermal Considerations
        1. 8.3.3.1 Power Dissipation
  10. Device and Documentation Support
    1. 9.1 Documentation Support
    2. 9.2 Support Resources
    3. 9.3 Trademarks
    4. 9.4 Electrostatic Discharge Caution
    5. 9.5 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information
    1. 11.1 Package Option Addendum
    2. 11.2 Tape and Reel Information

Cycle-by-Cycle Current Limit

The current-limit circuit activates if the current flowing through the low-side MOSFET exceeds the ILIMIT current. This feature restricts motor current to less than the ILIMIT.

The current-limit circuitry utilizes the current sense amplifier output of the three phases compared with the voltage at ILIMIT pin. Figure 7-28 shows the implementation of current limit circuitry, the output of current sense amplifiers are combined with star connected resistive network. This measured voltage VMEAS is compared with the external reference voltage VILIMIT pin to realize the current limit implementation. The relation between current sensed on OUTX pin and VMEAS threshold is given as:

Equation 5. V M E A S = V V R E F 2 - I O U T A + I O U T B + I O U T C × G A I N / 3

where

  • VVREFis the current sense amplifier supply
  • IOUTX is current flowing into the low-side MOSFET
  • CSA_GAIN is the current sense amplifier gain

The ILIMIT threshold can be adjusted by configuring the voltage at ILIMIT pin. ILIMIT varies linearly between 0A to 4A, as the voltage at ILIMIT pin varies from VREF/2 to VMEAS. A voltage more than VREF/2 can be applied to disable ILIMIT.

Current limit comparator output is blanked for a blanking time, on every rising edge of high side and low side switch control input (INHx and INLx) and the DRV8376 output state depends on the INHx and INLx status during blanking time. The blanking time is configured through ILIM_BLANK_SEL in SPI device and the blanking time is fixed to 5.5 us for slew rate of 50 and 1.8us for all other slew rates in hardware variant.

DRV8376 Current Limit Implementation Figure 7-28 Current Limit Implementation

When then the current limit activates, the high-side FET of each half bride is disabled until the rising edge of the high side (INHx) of that half bridge as shown in Figure 7-29. The low-side FETs can operate in brake mode or Coast (high-Z) mode by configuring the ILIM_MODE bit in the SPI device variant. The low-side FETs operate in Coast (high-Z) mode in the hardware variant.

DRV8376 Cycle-by-Cycle Current-Limit
          Operation Figure 7-29 Cycle-by-Cycle Current-Limit Operation
DRV8376 Cycle-by-Cycle Current-Limit Operation
          with Low Side Switching in Brake Mode Figure 7-30 Cycle-by-Cycle Current-Limit Operation with Low Side Switching in Brake Mode