SNAA393 January   2024 LMK6C , LMK6D , LMK6H , LMK6P

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Introduction
    1. 1.1 Why use a Phase Noise Analyzer?
  5. 2Understanding Phase Noise Plots
  6. 3Phase Noise Analyzer Measurement Settings
    1. 3.1 Start or Stop Frequency
    2. 3.2 Averaging and Correlation
    3. 3.3 Persistence
    4. 3.4 Spurious View Modes
    5. 3.5 Other Settings
  7. 4Hardware Setup for Different Clocking Formats
    1. 4.1 LVCMOS
    2. 4.2 LVDS
    3. 4.3 LVPECL/HCSL
    4. 4.4 Balun Recommendations
  8. 5Typical Measurements with Different Termination Schemes
    1. 5.1 LVCMOS
    2. 5.2 LVDS
    3. 5.3 LVPECL
    4. 5.4 HCSL
  9. 6Summary
  10. 7References

Abstract

Jitter and phase noise are some of the key performance parameters of oscillators and other clocking products. With some TI oscillators offering RMS jitter near 100 fs, advanced measurement techniques and equipment can be required to accurately measure device performance. Understanding the correct test equipment and hardware setup for different clocking formats is needed to have a clear idea of the true system performance of clocking components.