• Menu
  • Product
  • Email
  • PDF
  • Order now
  • LMK61XX High-Performance Ultra-Low Jitter Oscillator

    • SNAS676D October   2015  – October 2017 LMK61A2-100M , LMK61A2-125M , LMK61A2-156M , LMK61A2-312M , LMK61A2-644M , LMK61E0-050M , LMK61E0-155M , LMK61E0-156M , LMK61E2-100M , LMK61E2-125M , LMK61E2-156M , LMK61E2-312M , LMK61I2-100M

      PRODUCTION DATA.  

  • CONTENTS
  • SEARCH
  • LMK61XX High-Performance Ultra-Low Jitter Oscillator
  1. 1 Features
  2. 2 Applications
  3. 3 Description
  4. 4 Revision History
  5. 5 Pin Configuration and Functions
  6. 6 Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics - Power Supply
    6. 6.6  LVPECL Output Characteristics
    7. 6.7  LVDS Output Characteristics
    8. 6.8  HCSL Output Characteristics
    9. 6.9  OE Input Characteristics
    10. 6.10 Frequency Tolerance Characteristics
    11. 6.11 Power-On/Reset Characteristics (VDD)
    12. 6.12 PSRR Characteristics
    13. 6.13 PLL Clock Output Jitter Characteristics
    14. 6.14 Typical 156.25-MHz Output Phase Noise Characteristics
    15. 6.15 Additional Reliability and Qualification
    16. 6.16 Typical Characteristics
  7. 7 Parameter Measurement Information
    1. 7.1 Device Output Configurations
  8. 8 Power Supply Recommendations
  9. 9 Layout
    1. 9.1 Layout Guidelines
      1. 9.1.1 Ensuring Thermal Reliability
      2. 9.1.2 Best Practices for Signal Integrity
      3. 9.1.3 Recommended Solder Reflow Profile
  10. 10Device and Documentation Support
    1. 10.1 Related Links
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Community Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  11. 11Mechanical, Packaging, and Orderable Information
  12. IMPORTANT NOTICE
search No matches found.
  • Full reading width
    • Full reading width
    • Comfortable reading width
    • Expanded reading width
  • Card for each section
  • Card with all content

 

DATA SHEET

LMK61XX High-Performance Ultra-Low Jitter Oscillator

1 Features

  • Ultra-low Noise, High Performance
    • Jitter: 90 fs RMS Typical Fout > 100 MHz
    • PSRR: –70 dBc, Robust Supply Noise Immunity
  • Supported Output Format
    • LVPECL up to 1 GHz
    • LVDS up to 900 MHz
    • HCSL up to 400 MHz
  • Total Frequency Tolerance of ± 50 ppm (LMK61X2) and ± 25 ppm (LMK61X0)
  • 3.3-V Operating Voltage
  • Industrial Temperature Range (–40ºC to +85ºC)
  • 7 mm × 5 mm 6-Pin Package, Pin-Compatible With Industry Standard 7050 XO Package

2 Applications

  • High-Performance Replacement for Crystal, SAW, or Silicon-Based Oscillators
  • Switches, Routers, Network Line Cards, Base Band Units (BBU), Servers, Storage/SAN
  • Test and Measurement
  • Medical Imaging
  • FPGA, Processor Attach

3 Description

The LMK61XX is an ultra-low jitter oscillator that generates a commonly used reference clock. The device is pre-programmed in factory to support any reference clock frequency; supported output formats are LVPECL up to 1 GHz, LVDS up to 900 MHz, and HCSL up to 400 MHz. Internal power conditioning provide excellent power supply ripple rejection (PSRR), reducing the cost and complexity of the power delivery network. The device operates from a single 3.3 V ± 5% supply.

Device Information(1)

PART NUMBER OUTPUT FREQ (MHz) AND FORMAT TOTAL FREQ STABILITY (PPM) PACKAGE
LMK61A2-100M00 100 LVDS ± 50 6-pin QFM (7.0 mm x 5.0 mm)
LMK61A2-125M00 125 LVDS ± 50
LMK61A2-156M25 156.25 LVDS ± 50
LMK61A2-312M50 312.5 LVDS ± 50
LMK61A2-644M53 644.53125 LVDS ± 50
LMK61E0-050M00 50 LVPECL ± 25
LMK61E0-155M52 155.52 LVPECL ± 25
LMK61E0-156M25 156.25 LVPECL ± 25
LMK61E2-100M00 100 LVPECL ± 50
LMK61E2-125M00 125 LVPECL ± 50
LMK61E2-156M25 156.25 LVPECL ± 50
LMK61E2-312M50 312.5 LVPECL ± 50
LMK61I2-100M00 100 HCSL ± 50
  1. For all available packages, see the orderable addendum at the end of the data sheet.

Pinout

4 Revision History

Changes from C Revision (September 2017) to D Revision

  • Added LMK61A2-644M Go
  • Added LMK61E0-156M Go

Changes from B Revision (March 2017) to C Revision

  • Added LMK61E0-155M Go

Changes from A Revision (November 2015) to B Revision

  • Updated data sheet text to the latest documentation and translations standards Go
  • Added LMK61E0-050M Go
  • Updated key graphic Go
  • Added Receiving Notification of Documentation Updates section Go

Changes from * Revision (October 2015) to A Revision

  • Product Preview to Production Data Datasheet Go

5 Pin Configuration and Functions

SIA Package
6-Pin QFM
Top View
LMK61E0-050M LMK61E0-155M LMK61E0-156M LMK61E2-100M LMK61E2-125M LMK61E2-156M LMK61E2-312M LMK61A2-100M LMK61A2-125M LMK61A2-156M LMK61A2-312M LMK61A2-644M LMK61I2-100M pinout_snas676.gif

Pin Functions

PIN I/O DESCRIPTION
NAME NO.
POWER
GND 3 Ground Device Ground.
VDD 6 Analog 3.3 V Power Supply.
OUTPUT BLOCK
OUTP, OUTN 4, 5 Universal Differential Output Pair (LVPECL, LVDS or HCSL).
DIGITAL CONTROL / INTERFACES
NC 2 N/A No Connect.
OE 1 LVCMOS Output Enable (internal pullup). When set to low, output pair is disabled and set at high impedance.

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
VDD Device supply voltage –0.3 3.6 V
VIN Output voltage for logic inputs –0.3 VDD + 0.3 V
VOUT Output voltage for clock outputs –0.3 VDD + 0.3 V
TJ Junction temperature 150 °C
TSTG Storage temperature –40 125 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±4000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1500
(1) JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250 V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
VDD Device supply voltage 3.135 3.3 3.465 V
TA Ambient temperature –40 25 85 °C
TJ Junction temperature LMK61X2 125 °C
LMK61X0 115 °C
tRAMP VDD power-up ramp time 0.1 100 ms

6.4 Thermal Information

THERMAL METRIC(1) LMK61XX (2) (3) (4) UNIT
SIA (QFM)
6 PINS
Airflow (LFM) 0 Airflow (LFM) 200 Airflow (LFM) 400
RθJA Junction-to-ambient thermal resistance 55.2 46.4 43.7 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 34.6 n/a n/a °C/W
RθJB Junction-to-board thermal resistance 37.7 n/a n/a °C/W
ψJT Junction-to-top characterization parameter 11.3 17.6 22.5 °C/W
ψJB Junction-to-board characterization parameter 37.7 41.5 40.1 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance n/a n/a n/a °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.
(2) The package thermal resistance is calculated on a 4 layer JEDEC board.
(3) Connected to GND with 3 thermal vias (0.3-mm diameter).
(4) ψJB (junction to board) is used when the main heat flow is from the junction to the GND pad. Please refer to Thermal Considerations section for more information on ensuring good system reliability and quality.

6.5 Electrical Characteristics - Power Supply(1)

VDD = 3.3 V ± 5%, TA = -40C to 85°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
IDD Device current consumption LVPECL(2) 162 208 mA
LVDS 152 196
HCSL 155 196
IDD-PD Device current consumption when output is disabled OE = GND 136 mA
(1) Refer to Parameter Measurement Information for relevant test conditions.
(2) On-chip power dissipation should exclude 40 mW, dissipated in the 150 ohm termination resistors, from total power dissipation.

6.6 LVPECL Output Characteristics(1)

VDD = 3.3 V ± 5%, TA = -40C to 85°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
fOUT Output frequency(2) 10 1000 MHz
VOD Output voltage swing
(VOH – VOL)(2)
700 800 1200 mV
VOUT, DIFF, PP Differential output peak-to-peak swing 2 × |VOD| V
VOS Output common-mode voltage VDD – 1.55 V
tR / tF Output rise/fall time (20% to 80%)(3) 120 200 ps
PN-Floor Output phase noise floor (fOFFSET > 10 MHz) 156.25 MHz –165 dBc/Hz
ODC Output duty cycle(3) 45% 55%
(1) Refer to Parameter Measurement Information for relevant test conditions.
(2) An output frequency over fOUT max spec is possible, but output swing may be less than VOD min spec.
(3) Ensured by characterization.

6.7 LVDS Output Characteristics(1)

VDD = 3.3 V ± 5%, TA = –40°C to 85°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
fOUT Output frequency(1) 10 900 MHz
VOD Output voltage swing
(VOH – VOL)(1)
300 390 480 mV
VOUT, DIFF, PP Differential output peak-to-peak swing 2 × |VOD| V
VOS Output common-mode voltage 1.2 V
tR / tF Output rise/fall time (20% to 80%)(2) 150 250 ps
PN-Floor Output phase noise floor (fOFFSET > 10 MHz) 156.25 MHz –162 dBc/Hz
ODC Output duty cycle(2) 45% 55%
ROUT Differential output impedance 125 Ohm
(1) An output frequency over fOUT max spec is possible, but output swing may be less than VOD min spec.
(2) Ensured by characterization.

6.8 HCSL Output Characteristics(1)

VDD = 3.3 V ± 5%, TA = –40°C to 85°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
fOUT Output frequency 10 400 MHz
VOH Output high voltage 600 850 mV
VOL Output low voltage –100 100 mV
VCROSS Absolute crossing voltage(2)(3) 250 475 mV
VCROSS-DELTA Variation of VCROSS(2)(3) 0 140 mV
dV/dt Slew rate(4) 0.8 2 V/ns
PN-Floor Output phase noise floor (fOFFSET > 10 MHz) 100 MHz –164 dBc/Hz
ODC Output duty cycle(4) 45% 55%
(1) Refer to Parameter Measurement Information for relevant test conditions.
(2) Measured from -150 mV to +150 mV on the differential waveform with the 300 mVpp measurement window centered on the differential zero crossing.
(3) Ensured by design.
(4) Ensured by characterization.

6.9 OE Input Characteristics

VDD = 3.3 V ± 5%, TA = –40°C to 85°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIH Input high voltage 1.4 V
VIL Input low voltage 0.6 V
IIH Input high current VIH = VDD –40 40 uA
IIL Input low current VIL = GND –40 40 uA
CIN Input capacitance 2 pF

6.10 Frequency Tolerance Characteristics(1)

VDD = 3.3 V ± 5%, TA = –40°C to 85°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
fT Total frequency tolerance LMK61X2: All output formats, frequency bands and device junction temperature up to 125°C; includes initial freq tolerance, temperature & supply voltage variation, solder reflow and aging (10 years) –50 50 ppm
LMK61X0: All output formats, frequency bands and device junction temperature up to 115°C; includes initial freq tolerance, temperature & supply voltage variation, solder reflow and aging (5 years at 40°C) –25 25 ppm
(1) Ensured by characterization.

6.11 Power-On/Reset Characteristics (VDD)

VDD = 3.3 V ± 5%, TA = –40°C to 85°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VTHRESH Threshold voltage(1) 2.72 2.95 V
VDROOP Allowable voltage droop(2) 0.1 V
tSTARTUP Start-up time (1) Time elapsed from VDD at 3.135 V to output enabled 10 ms
tOE-EN Output enable time(2) Time elapsed from OE at VIH to output enabled 50 us
tOE-DIS Output disable time(2) Time elapsed from OE at VIL to output disabled 50 us
(1) Ensured by characterization.
(2) Ensured by design.

6.12 PSRR Characteristics(1)

VDD = 3.3 V, TA = 25°C, FS[1:0] = NC, NC
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
PSRR Spurs induced by 50-mV power supply ripple(2)(3) at 156.25-MHz output, all output types Sine wave at 50 kHz –70 dBc
Sine wave at 100 kHz –70
Sine wave at 500 kHz –70
Sine wave at 1 MHz –70
(1) Refer to Parameter Measurement Information for relevant test conditions.
(2) Measured max spur level with 50 mVpp sinusoidal signal between 50 kHz and 1 MHz applied on VDD pin
(3) DJSPUR (ps, pk-pk) = [2*10(SPUR/20) / (π*fOUT)]*1e6, where PSRR or SPUR in dBc and fOUT in MHz.

6.13 PLL Clock Output Jitter Characteristics(1)(3)

VDD = 3.3 V ± 5%, TA = –40°C to 85°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
RJ RMS phase jitter(2)
(12 kHz – 20 MHz)
(1 kHz – 5 MHz)
fOUT < 100 MHz, all output types 200 300 fs RMS
RJ RMS phase jitter(2)
(12 kHz – 20 MHz)
(1 kHz – 5 MHz)
fOUT ≥ 100 MHz (except 155.52 MHz and 644.53125 MHz), all output types 100 200 fs RMS
RJ RMS phase jitter(2)
(12 kHz – 20 MHz)
(1 kHz – 5 MHz)
fOUT = 155.52 MHz or 644.53125 MHz, all output types 150 300 fs RMS
(1) Refer to Parameter Measurement Information for relevant test conditions.
(2) Ensured by characterization.
(3) Phase jitter measured with Agilent E5052 signal source analyzer using a differential-to-single ended converter (balun or buffer).

6.14 Typical 156.25-MHz Output Phase Noise Characteristics(1)(2)

VDD = 3.3 V, TA = 25°C, Output Type = LVPECL/LVDS/HCSL
PARAMETER OUTPUT TYPE UNITS
LVPECL LVDS HCSL
phn10k Phase noise at 10-kHz offset –143 –143 –143 dBc/Hz
Phn20k Phase noise at 20-kHz offset –143 –143 –143 dBc/Hz
phn100k Phase noise at 100-kHz offset –144 –144 –144 dBc/Hz
Phn200k Phase noise at 200-kHz offset –145 –145 –145 dBc/Hz
phn1M Phase noise at 1-MHz offset –150 –150 –150 dBc/Hz
phn2M Phase noise at 2-MHz offset –154 –154 –154 dBc/Hz
phn10M Phase noise at 10-MHz offset –165 –162 –164 dBc/Hz
phn20M Phase noise at 20-MHz offset –165 –162 –164 dBc/Hz
(1) Refer to Parameter Measurement Information for relevant test conditions.
(2) Phase jitter measured with Agilent E5052 signal source analyzer using a differential-to-single ended converter (balun or buffer).

6.15 Additional Reliability and Qualification

PARAMETER CONDITION / TEST METHOD
Mechanical Shock MIL-STD-202, Method 213
Mechanical Vibration MIL-STD-202, Method 204
Moisture Sensitivity Level J-STD-020, MSL3

6.16 Typical Characteristics

LMK61E0-050M LMK61E0-155M LMK61E0-156M LMK61E2-100M LMK61E2-125M LMK61E2-156M LMK61E2-312M LMK61A2-100M LMK61A2-125M LMK61A2-156M LMK61A2-312M LMK61A2-644M LMK61I2-100M D001_SNAS674.png
Figure 1. Phase Noise of 156.25-MHz LVPECL Differential Output
LMK61E0-050M LMK61E0-155M LMK61E0-156M LMK61E2-100M LMK61E2-125M LMK61E2-156M LMK61E2-312M LMK61A2-100M LMK61A2-125M LMK61A2-156M LMK61A2-312M LMK61A2-644M LMK61I2-100M D003_SNAS674.png
Figure 3. Phase Noise of 156.25-MHz HCSL Differential Output
LMK61E0-050M LMK61E0-155M LMK61E0-156M LMK61E2-100M LMK61E2-125M LMK61E2-156M LMK61E2-312M LMK61A2-100M LMK61A2-125M LMK61A2-156M LMK61A2-312M LMK61A2-644M LMK61I2-100M D008_SNAS674.gif
Figure 5. 156.25 ± 78.125-MHz LVDS Differential Output Spectrum
LMK61E0-050M LMK61E0-155M LMK61E0-156M LMK61E2-100M LMK61E2-125M LMK61E2-156M LMK61E2-312M LMK61A2-100M LMK61A2-125M LMK61A2-156M LMK61A2-312M LMK61A2-644M LMK61I2-100M D013_SNAS674.gif
Figure 7. LVPECL Differential Output Swing vs Frequency
LMK61E0-050M LMK61E0-155M LMK61E0-156M LMK61E2-100M LMK61E2-125M LMK61E2-156M LMK61E2-312M LMK61A2-100M LMK61A2-125M LMK61A2-156M LMK61A2-312M LMK61A2-644M LMK61I2-100M D015_SNAS674.gif
Figure 9. HCSL Differential Output Swing vs Frequency
LMK61E0-050M LMK61E0-155M LMK61E0-156M LMK61E2-100M LMK61E2-125M LMK61E2-156M LMK61E2-312M LMK61A2-100M LMK61A2-125M LMK61A2-156M LMK61A2-312M LMK61A2-644M LMK61I2-100M D002_SNAS674.png
Figure 2. Phase Noise of 156.25-MHz LVDS Differential Output
LMK61E0-050M LMK61E0-155M LMK61E0-156M LMK61E2-100M LMK61E2-125M LMK61E2-156M LMK61E2-312M LMK61A2-100M LMK61A2-125M LMK61A2-156M LMK61A2-312M LMK61A2-644M LMK61I2-100M D007_SNAS674.gif
Figure 4. 156.25 ± 78.125-MHz LVPECL Differential Output Spectrum
LMK61E0-050M LMK61E0-155M LMK61E0-156M LMK61E2-100M LMK61E2-125M LMK61E2-156M LMK61E2-312M LMK61A2-100M LMK61A2-125M LMK61A2-156M LMK61A2-312M LMK61A2-644M LMK61I2-100M D009_SNAS674.gif
Figure 6. 156.25 ± 78.125-MHz HCSL Differential Output Spectrum
LMK61E0-050M LMK61E0-155M LMK61E0-156M LMK61E2-100M LMK61E2-125M LMK61E2-156M LMK61E2-312M LMK61A2-100M LMK61A2-125M LMK61A2-156M LMK61A2-312M LMK61A2-644M LMK61I2-100M D014_SNAS674.gif
Figure 8. LVDS Differential Output Swing vs Frequency

 

Texas Instruments

© Copyright 1995-2025 Texas Instruments Incorporated. All rights reserved.
Submit documentation feedback | IMPORTANT NOTICE | Trademarks | Privacy policy | Cookie policy | Terms of use | Terms of sale