SNAS717A April   2017  – October 2021 ADC12D1620QML-SP

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Converter Electrical Characteristics: Static Converter Characteristics
    6. 6.6  Converter Electrical Characteristics: Dynamic Converter Characteristics
    7. 6.7  Converter Electrical Characteristics: Analog Input/Output and Reference Characteristics
    8. 6.8  Converter Electrical Characteristic: Channel-to-Channel Characteristics
    9. 6.9  Converter Electrical Characteristics: LVDS CLK Input Characteristics
    10. 6.10 Electrical Characteristics: AutoSync Feature
    11. 6.11 Converter Electrical Characteristics: Digital Control and Output Pin Characteristics
    12. 6.12 Converter Electrical Characteristics: Power Supply Characteristics
    13. 6.13 Converter Electrical Characteristics: AC Electrical Characteristics
    14. 6.14 Electrical Characteristics: Delta Parameters
    15. 6.15 Timing Requirements: Serial Port Interface
    16. 6.16 Timing Requirements: Calibration
    17. 6.17 Quality Conformance Inspection
    18. 6.18 Timing Diagrams
    19. 6.19 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
      1. 7.1.1 Operation Summary
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Input Control and Adjust
        1. 7.3.1.1 AC- and DC-Coupled Modes
        2. 7.3.1.2 Input Full-Scale Range Adjust
        3. 7.3.1.3 Input Offset Adjust
        4. 7.3.1.4 Low-Sampling Power-Saving Mode (LSPSM)
        5. 7.3.1.5 DES Timing Adjust
        6. 7.3.1.6 Sampling Clock Phase Adjust
      2. 7.3.2 Output Control and Adjust
        1. 7.3.2.1 SDR / DDR Clock
        2. 7.3.2.2 LVDS Output Differential Voltage
        3. 7.3.2.3 LVDS Output Common-Mode Voltage
        4. 7.3.2.4 Output Formatting
        5. 7.3.2.5 Test-Pattern Mode
        6. 7.3.2.6 Time Stamp
      3. 7.3.3 Calibration Feature
        1. 7.3.3.1 Calibration Control Pins and Bits
        2. 7.3.3.2 How to Execute a Calibration
        3. 7.3.3.3 On-Command Calibration
        4. 7.3.3.4 Calibration Adjust
          1. 7.3.3.4.1 Read/Write Calibration Settings
        5. 7.3.3.5 Calibration and Power-Down
        6. 7.3.3.6 Calibration and the Digital Outputs
      4. 7.3.4 Power Down
      5. 7.3.5 Low-Sampling Power-Saving Mode (LSPSM)
    4. 7.4 Device Functional Modes
      1. 7.4.1 DES/Non-DES Mode
      2. 7.4.2 Demux/Non-Demux Mode
    5. 7.5 Programming
      1. 7.5.1 Control Modes
        1. 7.5.1.1 Non-ECM
          1. 7.5.1.1.1  Dual-Edge Sampling Pin (DES)
          2. 7.5.1.1.2  Non-Demultiplexed Mode Pin (NDM)
          3. 7.5.1.1.3  Dual Data-Rate Phase Pin (DDRPh)
          4. 7.5.1.1.4  Calibration Pin (CAL)
          5. 7.5.1.1.5  Low-Sampling Power-Saving Mode Pin (LSPSM)
          6. 7.5.1.1.6  Power-Down I-Channel Pin (PDI)
          7. 7.5.1.1.7  Power-Down Q-Channel Pin (PDQ)
          8. 7.5.1.1.8  Test-Pattern Mode Pin (TPM)
          9. 7.5.1.1.9  Full-Scale Input-Range Pin (FSR)
          10. 7.5.1.1.10 AC- or DC-Coupled Mode Pin (VCMO)
          11. 7.5.1.1.11 LVDS Output Common-Mode Pin (VBG)
        2. 7.5.1.2 Extended Control Mode
          1. 7.5.1.2.1 Serial Interface
    6. 7.6 Register Maps
      1. 7.6.1 Register Definitions
  8. Application Information Disclaimer
    1. 8.1 Application Information
      1. 8.1.1 Analog Inputs
        1. 8.1.1.1 Acquiring the Input
        2. 8.1.1.2 Driving the ADC in DES Mode
        3. 8.1.1.3 FSR and the Reference Voltage
        4. 8.1.1.4 Out-Of-Range Indication
        5. 8.1.1.5 AC-Coupled Input Signals
        6. 8.1.1.6 DC-Coupled Input Signals
        7. 8.1.1.7 Single-Ended Input Signals
      2. 8.1.2 Clock Inputs
        1. 8.1.2.1 CLK Coupling
        2. 8.1.2.2 CLK Frequency
        3. 8.1.2.3 CLK Level
        4. 8.1.2.4 CLK Duty Cycle
        5. 8.1.2.5 CLK Jitter
        6. 8.1.2.6 CLK Layout
      3. 8.1.3 LVDS Outputs
        1. 8.1.3.1 Common-Mode and Differential Voltage
        2. 8.1.3.2 Output Data Rate
        3. 8.1.3.3 Terminating Unused LVDS Output Pins
      4. 8.1.4 Synchronizing Multiple ADC12D1620 Devices in a System
        1. 8.1.4.1 AutoSync Feature
        2. 8.1.4.2 DCLK Reset Feature
      5. 8.1.5 Temperature Sensor
    2. 8.2 Radiation Environments
      1. 8.2.1 Total Ionizing Dose
      2. 8.2.2 Single Event Latch-Up and Functional Interrupt
      3. 8.2.3 Single Event Upset
    3. 8.3 Cold Sparing
  9. Power Supply Recommendations
    1. 9.1 System Power-On Considerations
      1. 9.1.1 Control Pins
      2. 9.1.2 Power On in Non-ECM
      3. 9.1.3 Power On in ECM
      4. 9.1.4 Power-on and Data Clock (DCLK)
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Power Planes
      2. 10.1.2 Bypass Capacitors
      3. 10.1.3 Ground Planes
      4. 10.1.4 Power System Example
    2. 10.2 Layout Example
    3. 10.3 Thermal Considerations
    4. 10.4 Board Mounting Recommendation
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Device Nomenclature
      2. 11.1.2 Third-Party Products Disclaimer
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Support Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information
    1. 12.1 Engineering Samples

DCLK Reset Feature

The DCLK reset feature is available through ECM, but it is disabled by default. DCLKI and DCLKQ are always synchronized, by design, and do not require a pulse from DCLK_RST to become synchronized.

The DCLK_RST signal must observe certain timing requirements, which are shown in Figure 6-7 of Section 6.16. The DCLK_RST pulse must be of a minimum width, and its deassertion edge must observe setup and hold times with respect to the CLK input rising edge. These timing specifications are listed as tPWR, tSR and tHR and may be found in Section 6.13.

The DCLK_RST signal can be asserted asynchronously to the input clock. If DCLK_RST is asserted, the DCLK output is held in a designated state (logic-high) in demux mode; in non-demux mode, the DCLK continues to function normally. Depending upon when the DCLK_RST signal is asserted, there may be a narrow pulse on the DCLK line during this reset event. When the DCLK_RST signal is de-asserted, there are tSYNC_DLY CLK cycles of systematic delay and the next CLK rising edge synchronizes the DCLK output with those of other ADC12D1620 devices in the system. For 90° mode (DDRPh = logic-high), the synchronizing edge occurs on the rising edge of CLK, 4 cycles after the first rising edge of CLK after DCLK_RST is released. For 0° mode (DDRPh = logic-low), this is 5 cycles instead. The DCLK output is enabled again after a constant delay of tOD.

For both demux and non-demux modes, there is some uncertainty about how DCLK comes out of the reset state for the first DCLK_RST pulse. For the second (and subsequent) DCLK_RST pulses, the DCLK comes out of the reset state in a known way. Therefore, if using the DCLK reset feature, TI recommends applying one dummy DCLK_RST pulse before using the second DCLK_RST pulse to synchronize the outputs. This recommendation applies each time the device or channel is powered-on.

When using DCLK_RST to synchronize multiple ADC12D1620 devices, the select-phase bits in the Control Register (Addr: Eh, Bits: 4:3) must be the same for each primary ADC12D1620.