SNAS866A December   2023  – September 2024 LMX1214

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Timing Requirements
    7. 5.7 Timing Diagram
    8. 5.8 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
      1. 6.1.1 Range of Dividers
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Power-On Reset
      2. 6.3.2 Temperature Sensor
      3. 6.3.3 Clock Outputs
        1. 6.3.3.1 Clock Output Buffers
        2. 6.3.3.2 Clock MUX
        3. 6.3.3.3 Clock Divider
      4. 6.3.4 AUXCLK Output
        1. 6.3.4.1 AUXCLKOUT Output Format
        2. 6.3.4.2 AUXCLK_DIV_PRE and AUXCLK_DIV Dividers
      5. 6.3.5 SYNC Input Pins
        1. 6.3.5.1 SYNC Pins Common-Mode Voltage
        2. 6.3.5.2 Windowing Feature
    4. 6.4 Device Functional Modes Configurations
      1. 6.4.1 Pin Mode Control
  8. Register Map
    1. 7.1 Device Registers
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 SYNC Input Configuration
      2. 8.1.2 Treatment of Unused Pins
      3. 8.1.3 Current Consumption
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Plots
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Device Support
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 Receiving Notification of Documentation Updates
    4. 9.4 Support Resources
    5. 9.5 Trademarks
    6. 9.6 Electrostatic Discharge Caution
    7. 9.7 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information
    1. 11.1 Tape and Reel Information

Power Supply Recommendations

This devices uses a 2.5-V supply for the whole device. A direct connection to a switching power supply likely results in unwanted spurs at the output. Bypassing can be done individually at all the power pins. TI recommends placing smaller capacitors with higher frequency of minimum impedance on the same layer as the device, as close to the pins as possible. The frequencies of nearly all signals in the device are 100 MHz or greater, therefore larger value bypass capacitors with low frequency of minimum impedance are only used for internal LDO stability, and the distance to the device (and the loop inductance of the bypass path) can be larger. Isolate the supply pins for the clocks and the AUXCLKOUT with a small resistor or ferrite bead if both are being used simultaneously. See the Pin Configuration and Functions section for additional recommendations for each pin.

Note: This device has minimal PSRR due to the low operating voltage and internal filtering by LDOs. Verifying that this device is connected to a low noise supply that does not have excessive spurious noise is important.