SNOA954D November   2019  – June 2021 LDC0851 , LDC1001 , LDC1001-Q1 , LDC1041 , LDC1051 , LDC1101 , LDC1312 , LDC1312-Q1 , LDC1314 , LDC1314-Q1 , LDC1612 , LDC1612-Q1 , LDC1614 , LDC1614-Q1 , LDC2112 , LDC2114 , LDC3114 , LDC3114-Q1

 

  1.   Trademarks
  2. 1LDC Applications
    1. 1.1 Axial Sensing
      1. 1.1.1 Buttons and Keypads
    2. 1.2 Event Counting
    3. 1.3 Other Types of Sensing
  3. 2Inductive Sensing Theory of Operation
  4. 3LDC Device Feature Overview
    1. 3.1 Sample Rate
    2. 3.2 Sensor L Measurement and Reference Frequency
    3. 3.3 Sensor RP Measurement
    4. 3.4 Sensor RP (Current) Drive Capability
    5. 3.5 Switch Output Functionality
    6. 3.6 Sensor Frequency Range
    7. 3.7 Multi-Channel Sensing
    8. 3.8 Power Management
    9. 3.9 Internal Algorithms
  5. 4Device Families
    1. 4.1 Inductive Touch Devices
      1. 4.1.1 Inductive Touch LDC Recommended Applications
    2. 4.2 Multichannel LDC Devices
      1. 4.2.1 Multi-Channel LDC Recommended Applications
      2. 4.2.2 LDC1101
        1. 4.2.2.1 LDC1101 Recommended Applications
      3. 4.2.3 LDC0851
        1. 4.2.3.1 Recommended Applications
  6. 5Summary
  7. 6Revision History

Sensor Frequency Range

The sensor frequency is correlated to the physical size of the inductor. While both the inductance and capacitance of the sensor determine its frequency, higher frequencies are usually associated with smaller inductances (coils), and vice versa.

Sensing range is also correlated to inductor (coil) size; larger coils have longer sensing range. Hence, larger, lower frequency sensors can usually be located farther away from the target than smaller, higher frequency sensors.