SNOSDC1A June   2024  – October 2024 LMH1229 , LMH1239

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Timing Requirements for Serial Management (SM) Bus Interface
    7. 5.7 Timing Requirements for Serial Parallel Interface (SPI) Interface
    8. 5.8 Typical Characteristics
      1. 5.8.1 TX Characteristics
      2. 5.8.2 RX Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 4-Level Input Pins and Thresholds
      2. 6.3.2 Input and Output Signal Flow Control
        1. 6.3.2.1 Input Mux Selection (LMH1239 Only)
        2. 6.3.2.2 Output Mux and SDI_OUT Selection
      3. 6.3.3 Input Carrier Detect
      4. 6.3.4 Adaptive Cable Equalizer (SDI_IN±, SDI_IN1±)
      5. 6.3.5 Clock and Data (CDR) Recovery
      6. 6.3.6 CDR Loop Bandwidth Control
      7. 6.3.7 Output Function Control
      8. 6.3.8 Output Driver Control
        1. 6.3.8.1 Line-Side 75Ω Output Cable Driver (SDI_OUT±)
          1. 6.3.8.1.1 Output Amplitude (VOD)
          2. 6.3.8.1.2 Output Pre-Emphasis
          3. 6.3.8.1.3 Output Slew Rate
          4. 6.3.8.1.4 Output Polarity Inversion
        2. 6.3.8.2 Host-Side 100Ω Output Driver (OUT0±, OUT1±)
      9. 6.3.9 Debug and Diagnostic Features
        1. 6.3.9.1 Internal Eye Opening Monitor (EOM)
        2. 6.3.9.2 PRBS Generator, Error Checker, and Error Injector
        3. 6.3.9.3 Status Indicators and Interrupts
          1. 6.3.9.3.1 LOCK_N (Lock Indicator)
          2. 6.3.9.3.2 CD_N (Carrier Detect)
          3. 6.3.9.3.3 Cable Fault Detection (SDI_OUT+ Only)
          4. 6.3.9.3.4 INT_N (Interrupt)
        4. 6.3.9.4 Additional Programmability
          1. 6.3.9.4.1 Cable EQ Index (CEI)
          2. 6.3.9.4.2 Digital MUTEREF
    4. 6.4 Device Functional Modes
      1. 6.4.1 System Management Bus (SMBus) Mode
        1. 6.4.1.1 SMBus Read and Write Transaction
          1. 6.4.1.1.1 SMBus Write Operation Format
          2. 6.4.1.1.2 SMBus Read Operation Format
      2. 6.4.2 Serial Peripheral Interface (SPI) Mode
        1. 6.4.2.1 SPI Read and Write Transactions
          1. 6.4.2.1.1 SPI Write Transaction Format
          2. 6.4.2.1.2 SPI Read Transaction Format
        2. 6.4.2.2 SPI Daisy Chain
  8. Application and Implementation
    1. 7.1 Application Information
      1. 7.1.1 SMPTE Requirements and Specifications
      2. 7.1.2 Optimizing the Time to Adapt and Lock
      3. 7.1.3 Optimized Loop Bandwidth Settings for Diagnostic or Cascade Applications
      4. 7.1.4 LMH1229 and LMH1297 (EQ Mode) Pin-to-Pin Compatibility
    2. 7.2 Typical Application
      1. 7.2.1 Cable Equalizer With Loop-Through
        1. 7.2.1.1 Design Requirements
        2. 7.2.1.2 Detailed Design Procedure
        3. 7.2.1.3 Application Curves
      2. 7.2.2 Cable Equalizer With Redundant SDI Input (LMH1239 only)
        1. 7.2.2.1 Design Requirements
        2. 7.2.2.2 Detailed Design Procedure
        3. 7.2.2.3 Application Curves
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
        1. 7.4.1.1 Board Stack-Up and Ground References
        2. 7.4.1.2 High-Speed PCB Trace Routing and Coupling
          1. 7.4.1.2.1 SDI_IN± and SDI_OUT±:
          2. 7.4.1.2.2 OUT0± and OUT1±:
        3. 7.4.1.3 Anti-Pads
        4. 7.4.1.4 BNC Connector Layout and Routing
        5. 7.4.1.5 Power Supply and Ground Connections
        6. 7.4.1.6 Footprint Recommendations
      2. 7.4.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 Documentation Support
      1. 8.1.1 Related Documentation
    2. 8.2 Receiving Notification of Documentation Updates
    3. 8.3 Support Resources
    4. 8.4 Trademarks
    5. 8.5 Electrostatic Discharge Caution
    6. 8.6 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Overview

The LMH12x9 is TI's second generation long-reach 12G UHD-SDI adaptive cable equalizer with integrated reclocker, supporting all SMPTE video rates up to 11.88Gbps. The LMH12x9 has a 75Ω cable equalizer input capable of equalizing up to 100m Belden 1694A cable.

The 75Ω cable equalizer input features an internal 75Ω termination and compensation network to meet stringent SMPTE return loss requirements. The 75Ω cable equalizer input passes through a multi-rate reclocker with a programmable loop filter.

The on-chip reclocker attenuates high-frequency jitter and fully regenerates the data using a clean, low-jitter clock. The reclocker has a built-in loop filter and does not require any input reference clock. The LMH12x9 also has an internal eye opening monitor and a programmable pin for CDR lock indication, input carrier detect, or hardware interrupts to support system diagnostics and board bring-up.

After the reclocker is a 1:3 fan-out mux. Two of the outputs are 100Ω drivers with de-emphasis for PCB routing of data or clock signals, while the third output is a 75Ω driver with pre-emphasis for reclocked SDI loop-through data in cascaded applications.

The LMH12x9 is offered in a 5mm × 5mm 32-pin WQFN package with two pinout variants:

  • LMH1229: Pin-to-pin drop-in replacement for LMH1297 12G-SDI Bidirectional I/O (Equalizer mode)

  • LMH1239: Unique pinout with additional 2:1 75Ω input mux included for system redundancy

The LMH12x9 is powered from a single 2.5V supply with an on-chip 1.8V LDO regulator. The operating state of the LMH12x9 can be configured through control pins, SPI, or SMBus serial control interface. In the absence of an input signal, the LMH12x9 automatically goes into Power Save mode. Users can also manually force the LMH12x9 into Power Save mode through the ENABLE control pin. The LMH1297 is offered in a small 5mm × 5mm, 32-pin QFN package.