SNVA941A June   2020  – November 2022 LM5156 , LM5156-Q1 , LM51561 , LM51561-Q1 , LM51561H , LM51561H-Q1 , LM5156H , LM5156H-Q1

 

  1.   How to Design a Boost Converter Using the LM5156
  2. 1LM5156 Design Example
  3. 2Example Application
  4. 3Calculations and Component Selection
    1. 3.1  Switching Frequency
    2. 3.2  Inductor Calculation
    3. 3.3  Current Sense Resistor Calculation
      1. 3.3.1 Current Sense Resistor and Slope Compensation Resistor Selection
      2. 3.3.2 Current Sense Resistor Filter Calculation
    4. 3.4  Inductor Selection
    5. 3.5  Diode Selection
    6. 3.6  MOSFET Selection
    7. 3.7  Output Capacitor Selection
    8. 3.8  Input Capacitor Selection
    9. 3.9  UVLO Resistor Selection
    10. 3.10 Soft-Start Capacitor Selection.
    11. 3.11 Feedback Resistor Selection
    12. 3.12 Control Loop Compensation
      1. 3.12.1 Select the Loop Crossover Frequency (fCROSS)
      2. 3.12.2 Determine Required RCOMP
      3. 3.12.3 Determine Required CCOMP
      4. 3.12.4 Determine Required CHF
    13. 3.13 Efficiency Estimation
  5. 4Component Selection Summary
    1.     25
  6. 5Small-Signal Frequency Analysis
    1. 5.1 Boost Regulator Modulator Modeling
    2. 5.2 Compensation Modeling
    3. 5.3 Open-Loop Modeling
  7. 6Revision History

Diode Selection

The diode must be rated to handle the average load current, plus some margin, while being able to dissipate the conduction losses. The voltage rating of the diode must be greater than the load voltage, VLOAD. Selecting a Schottky diode is recommended due to the small reverse recovery time and smaller forward voltage drop with respect to a standard fast recovery diode. For this design a 60-V reverse voltage, 10-A average forward current Schottky diode is selected. The wort case conducted power loss of this diode is calculated in Equation 13.

Equation 13. GUID-65CB1D88-DE15-4608-AE96-247A767FCE12-low.gif

where

  • VF is the forward voltage drop of the diode