SNVA941A June   2020  – November 2022 LM5156 , LM5156-Q1 , LM51561 , LM51561-Q1 , LM51561H , LM51561H-Q1 , LM5156H , LM5156H-Q1

 

  1.   How to Design a Boost Converter Using the LM5156
  2. 1LM5156 Design Example
  3. 2Example Application
  4. 3Calculations and Component Selection
    1. 3.1  Switching Frequency
    2. 3.2  Inductor Calculation
    3. 3.3  Current Sense Resistor Calculation
      1. 3.3.1 Current Sense Resistor and Slope Compensation Resistor Selection
      2. 3.3.2 Current Sense Resistor Filter Calculation
    4. 3.4  Inductor Selection
    5. 3.5  Diode Selection
    6. 3.6  MOSFET Selection
    7. 3.7  Output Capacitor Selection
    8. 3.8  Input Capacitor Selection
    9. 3.9  UVLO Resistor Selection
    10. 3.10 Soft-Start Capacitor Selection.
    11. 3.11 Feedback Resistor Selection
    12. 3.12 Control Loop Compensation
      1. 3.12.1 Select the Loop Crossover Frequency (fCROSS)
      2. 3.12.2 Determine Required RCOMP
      3. 3.12.3 Determine Required CCOMP
      4. 3.12.4 Determine Required CHF
    13. 3.13 Efficiency Estimation
  5. 4Component Selection Summary
    1.     25
  6. 5Small-Signal Frequency Analysis
    1. 5.1 Boost Regulator Modulator Modeling
    2. 5.2 Compensation Modeling
    3. 5.3 Open-Loop Modeling
  7. 6Revision History

Small-Signal Frequency Analysis

This section provides detailed equations used to model the control loop when the LM5156 is configured as a boost regulator. These equations are only valid when the regulator is operating in continuous conduction mode. The simplified formulas allow for quick evaluation of the control loop, but loose accuracy at high frequencies. The comprehensive formulas are more complex but provide better accuracy at high frequencies.