SNVS686K March   2011  – May 2024 LMZ22005

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Synchronization Input
      2. 6.3.2 Output Overvoltage Protection
      3. 6.3.3 Current Limit
      4. 6.3.4 Thermal Protection
      5. 6.3.5 Prebiased Start-Up
    4. 6.4 Device Functional Modes
      1. 6.4.1 Discontinuous And Continuous Conduction Modes
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
        1. 7.2.2.1 Design Steps
        2. 7.2.2.2 Enable Divider, RENT, RENB and RENH Selection
        3. 7.2.2.3 Output Voltage Selection
        4. 7.2.2.4 Soft-start Capacitor Selection
        5. 7.2.2.5 Tracking Supply Divider Option
        6. 7.2.2.6 CO Selection
        7. 7.2.2.7 CIN Selection
        8. 7.2.2.8 Discontinuous And Continuous Conduction Modes Selection
      3. 7.2.3 Application Curves
  9. Power Supply Recommendations
  10. Layout
    1. 9.1 Layout Guidelines
    2. 9.2 Layout Examples
    3. 9.3 Power Dissipation and Thermal Considerations
    4. 9.4 Power Module SMT Guidelines
  11. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 Development Support
    2. 10.2 Documentation Support
      1. 10.2.1 Related Documentation
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Power Dissipation and Thermal Considerations

When calculating module dissipation use the maximum input voltage and the average output current for the application. Many common operating conditions are provided in the characteristic curves such that less common applications can be derived through interpolation. In all designs, the junction temperature must be kept below the rated maximum of 125°C.

For the design case of VIN = 12 V, VO = 3.3 V, IO = 5 A, and TAMB(MAX) = 85°C, the module must see a thermal resistance from case to ambient of less than:

Equation 15. RθCA< (TJ-MAX – TA-MAX) / PIC-LOSS – RθJC

Given the typical thermal resistance from junction to case to be 1.9°C/W. Use the 85°C power dissipation curves in the Typical Characteristics section to estimate the PIC-LOSS for the application being designed. In this application it is 4.3W.

Equation 16. RθCA = (125 – 85) / 4.3 W – 1.9 = 7.4

To reach RθCA = 7.4, the PCB is required to dissipate heat effectively. With no airflow and no external heat-sink, a good estimate of the required board area covered by 2-oz. copper on both the top and bottom metal layers is:

Equation 17. Board_Area_cm2 = 500°C x cm2/W / RθCA

As a result, approximately 67 square cm of 2-oz. copper on top and bottom layers is required for the PCB design. The PCB copper heat sink must be connected to the exposed pad. Approximately sixty, 8 mils thermal vias spaced 39 mils (1.0 mm) apart connect the top copper to the bottom copper. For an example of a high thermal performance PCB layout for SIMPLE SWITCHER power modules, refer to AN-2085 (SNVA457), AN-2125 (SNVA437), AN-2020 (SNVA419) and AN-2026 (SNVA424).