SNVS686K March   2011  – May 2024 LMZ22005

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Synchronization Input
      2. 6.3.2 Output Overvoltage Protection
      3. 6.3.3 Current Limit
      4. 6.3.4 Thermal Protection
      5. 6.3.5 Prebiased Start-Up
    4. 6.4 Device Functional Modes
      1. 6.4.1 Discontinuous And Continuous Conduction Modes
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
        1. 7.2.2.1 Design Steps
        2. 7.2.2.2 Enable Divider, RENT, RENB and RENH Selection
        3. 7.2.2.3 Output Voltage Selection
        4. 7.2.2.4 Soft-start Capacitor Selection
        5. 7.2.2.5 Tracking Supply Divider Option
        6. 7.2.2.6 CO Selection
        7. 7.2.2.7 CIN Selection
        8. 7.2.2.8 Discontinuous And Continuous Conduction Modes Selection
      3. 7.2.3 Application Curves
  9. Power Supply Recommendations
  10. Layout
    1. 9.1 Layout Guidelines
    2. 9.2 Layout Examples
    3. 9.3 Power Dissipation and Thermal Considerations
    4. 9.4 Power Module SMT Guidelines
  11. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 Development Support
    2. 10.2 Documentation Support
      1. 10.2.1 Related Documentation
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Power Supply Recommendations

The LMZ22005 device is designed to operate from an input voltage supply range between 6 V and 20 V. This input supply must be well regulated and able to withstand maximum input current and maintain a stable voltage. The resistance of the input supply rail must be low enough that an input current transient does not cause a high enough drop at the LMZ22005 supply voltage that can cause a false UVLO fault triggering and system reset. If the input supply is more than a few inches from the LMZ22005, additional bulk capacitance may be required in addition to the ceramic bypass capacitors. The amount of bulk capacitance is not critical, but a 47-μF or 100-μF electrolytic capacitor is a typical choice.