SNVS686K March   2011  – May 2024 LMZ22005

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Synchronization Input
      2. 6.3.2 Output Overvoltage Protection
      3. 6.3.3 Current Limit
      4. 6.3.4 Thermal Protection
      5. 6.3.5 Prebiased Start-Up
    4. 6.4 Device Functional Modes
      1. 6.4.1 Discontinuous And Continuous Conduction Modes
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
        1. 7.2.2.1 Design Steps
        2. 7.2.2.2 Enable Divider, RENT, RENB and RENH Selection
        3. 7.2.2.3 Output Voltage Selection
        4. 7.2.2.4 Soft-start Capacitor Selection
        5. 7.2.2.5 Tracking Supply Divider Option
        6. 7.2.2.6 CO Selection
        7. 7.2.2.7 CIN Selection
        8. 7.2.2.8 Discontinuous And Continuous Conduction Modes Selection
      3. 7.2.3 Application Curves
  9. Power Supply Recommendations
  10. Layout
    1. 9.1 Layout Guidelines
    2. 9.2 Layout Examples
    3. 9.3 Power Dissipation and Thermal Considerations
    4. 9.4 Power Module SMT Guidelines
  11. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 Development Support
    2. 10.2 Documentation Support
      1. 10.2.1 Related Documentation
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Thermal Protection

The junction temperature of the LMZ22005 must not be allowed to exceed its maximum ratings. Thermal protection is implemented by an internal thermal shutdown circuit which activates at 165°C (typical) causing the device to enter a low power standby state. In this state the main MOSFET remains off causing VO to fall, and additionally the CSS capacitor is discharged to ground. Thermal protection helps prevent catastrophic failures for accidental device overheating. When the junction temperature falls back below 150°C (typical hysteresis = 15°C) the SS pin is released, VO rises smoothly, and normal operation resumes.

Applications requiring maximum output current especially those at high input voltage may require additional derating at elevated temperatures.