SNVSAB5A September   2017  – June 2021 LP87332A-Q1

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 I2C Serial Bus Timing Parameters
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  DC/DC Converters
        1. 7.3.1.1 Overview
        2. 7.3.1.2 Transition Between PWM and PFM Modes
        3. 7.3.1.3 Buck Converter Load Current Measurement
        4. 7.3.1.4 Spread-Spectrum Mode
      2. 7.3.2  Sync Clock Functionality
      3. 7.3.3  Low-Dropout Linear Regulators (LDOs)
      4. 7.3.4  Power-Up
      5. 7.3.5  Regulator Control
        1. 7.3.5.1 Enabling and Disabling Regulators
        2. 7.3.5.2 Changing Output Voltage
      6. 7.3.6  Enable and Disable Sequences
      7. 7.3.7  Device Reset Scenarios
      8. 7.3.8  Diagnosis and Protection Features
        1. 7.3.8.1 Power-Good Information (PGOOD pin)
          1. 7.3.8.1.1 PGOOD Pin Gated Mode
          2. 7.3.8.1.2 PGOOD Pin Continuous Mode
          3. 7.3.8.1.3 PGOOD Pin Inactive Mode
        2. 7.3.8.2 Warnings for Diagnosis (Interrupt)
          1. 7.3.8.2.1 Output Power Limit
          2. 7.3.8.2.2 Thermal Warning
        3. 7.3.8.3 Protection (Regulator Disable)
          1. 7.3.8.3.1 Short-Circuit and Overload Protection
          2. 7.3.8.3.2 Overvoltage Protection
          3. 7.3.8.3.3 Thermal Shutdown
        4. 7.3.8.4 Fault (Power Down)
          1. 7.3.8.4.1 Undervoltage Lockout
      9. 7.3.9  Operation of the GPO Signals
      10. 7.3.10 Digital Signal Filtering
    4. 7.4 Device Functional Modes
      1. 7.4.1 Modes of Operation
    5. 7.5 Programming
      1. 7.5.1 I2C-Compatible Interface
        1. 7.5.1.1 Data Validity
        2. 7.5.1.2 Start and Stop Conditions
        3. 7.5.1.3 Transferring Data
        4. 7.5.1.4 I2C-Compatible Chip Address
        5. 7.5.1.5 Auto-Increment Feature
    6. 7.6 Register Maps
      1. 7.6.1 Register Descriptions
        1. 7.6.1.1  DEV_REV
        2. 7.6.1.2  OTP_REV
        3. 7.6.1.3  BUCK0_CTRL_1
        4. 7.6.1.4  BUCK0_CTRL_2
        5. 7.6.1.5  BUCK1_CTRL_1
        6. 7.6.1.6  BUCK1_CTRL_2
        7. 7.6.1.7  BUCK0_VOUT
        8. 7.6.1.8  BUCK1_VOUT
        9. 7.6.1.9  LDO0_CTRL
        10. 7.6.1.10 LDO1_CTRL
        11. 7.6.1.11 LDO0_VOUT
        12. 7.6.1.12 LDO1_VOUT
        13. 7.6.1.13 BUCK0_DELAY
        14. 7.6.1.14 BUCK1_DELAY
        15. 7.6.1.15 LDO0_DELAY
        16. 7.6.1.16 LDO1_DELAY
        17. 7.6.1.17 GPO_DELAY
        18. 7.6.1.18 GPO2_DELAY
        19. 7.6.1.19 GPO_CTRL
        20. 7.6.1.20 CONFIG
        21. 7.6.1.21 PLL_CTRL
        22. 7.6.1.22 PGOOD_CTRL_1
        23. 7.6.1.23 PGOOD_CTRL_2
        24. 7.6.1.24 PG_FAULT
        25. 7.6.1.25 RESET
        26. 7.6.1.26 INT_TOP_1
        27. 7.6.1.27 INT_TOP_2
        28. 7.6.1.28 INT_BUCK
        29. 7.6.1.29 INT_LDO
        30. 7.6.1.30 TOP_STAT
        31. 7.6.1.31 BUCK_STAT
        32. 7.6.1.32 LDO_STAT
        33. 7.6.1.33 TOP_MASK_1
        34. 7.6.1.34 TOP_MASK_2
        35. 7.6.1.35 BUCK_MASK
        36. 7.6.1.36 LDO_MASK
        37. 7.6.1.37 SEL_I_LOAD
        38. 7.6.1.38 I_LOAD_2
        39. 7.6.1.39 I_LOAD_1
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
        1. 8.2.1.1 Inductor Selection
        2. 8.2.1.2 Buck Input Capacitor Selection
        3. 8.2.1.3 Buck Output Capacitor Selection
        4. 8.2.1.4 LDO Input Capacitor Selection
        5. 8.2.1.5 LDO Output Capacitor Selection
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Support Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Buck Output Capacitor Selection

The output capacitor COUT_BUCK0 and COUT_BUCK1 are shown in Section 8.2. A ceramic local output capacitor of 22 μF is required per phase. Use ceramic capacitors, X7R type; do not use Y5V or F. DC bias voltage characteristics of ceramic capacitors must be considered. The output filter capacitor smooths out current flow from the inductor to the load, which helps maintain a steady output voltage during transient load changes and reduces output voltage ripple. These capacitors must be selected with sufficient capacitance and sufficiently low ESR and ESL to perform these functions. The minimum effective output capacitance to ensure good performance is 10 μF per phase, including the DC voltage rolloff, tolerances, aging, and temperature effects.

The output voltage ripple is caused by the charging and discharging of the output capacitor and due to its RESR. The RESR is frequency dependent (and temperature dependent); ensure the value used for selection process is at the switching frequency of the part. See Table 8-3.

POL capacitors can be used to improve load transient performance and to decrease the ripple voltage. A higher output capacitance improves the load step behavior, reduces the output voltage ripple, and decreases the PFM switching frequency. However, output capacitance higher than 150 μF per phase is not necessarily of any benefit. The output capacitor may be the limiting factor in the output voltage ramp, see Section 6 for maximum output capacitance for different slew-rate settings. For large output capacitors, the output voltage might be slower than the programmed ramp rate at voltage transitions, because of the higher energy stored on the output capacitance. Also at start-up, the time required to charge the output capacitor to target value might be longer. At shutdown, the output voltage is discharged to a 0.6 V level using forced-PWM operation. This can increase the input voltage if the load current is small and the output capacitor is large compared to input capacitor. Below the 0.6 V level, the output capacitor is discharged by the internal discharge resistor, and with large capacitor more time is required to settle VOUT down as a consequence of the increased time constant.

Table 8-3 Recommended Buck Output Capacitors (X7R Dielectric)
MANUFACTURERPART NUMBERVALUECASE SIZEDIMENSIONS L × W × H (mm)VOLTAGE RATING
MurataGCM31CR71A226KE0222 µF (10%)12063.2 × 1.6 × 1.610 V