SNVSAJ6D July   2016  – December 2017 LM5141-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Simplified Schematic
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Switching Characteristics
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  High Voltage Start-up Regulator
      2. 7.3.2  VCC Regulator
      3. 7.3.3  Oscillator
      4. 7.3.4  Synchronization
      5. 7.3.5  Frequency Dithering (Spread Spectrum)
      6. 7.3.6  Enable
      7. 7.3.7  Power Good
      8. 7.3.8  Output Voltage
        1. 7.3.8.1 Minimum Output Voltage Adjustment
      9. 7.3.9  Current Sense
      10. 7.3.10 DCR Current Sensing
      11. 7.3.11 Error Amplifier and PWM Comparator
      12. 7.3.12 Slope Compensation
      13. 7.3.13 Hiccup Mode Current Limiting
      14. 7.3.14 Standby Mode
      15. 7.3.15 Soft Start
      16. 7.3.16 Diode Emulation
      17. 7.3.17 High- and Low-Side Drivers
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Custom Design With WEBENCH® Tools
        2. 8.2.2.2 Inductor Calculation
        3. 8.2.2.3 Current Sense Resistor
        4. 8.2.2.4 Output Capacitor
        5. 8.2.2.5 Input Filter
          1. 8.2.2.5.1 EMI Filter Design
          2. 8.2.2.5.2 MOSFET Selection
          3. 8.2.2.5.3 Driver Slew-Rate Control
          4. 8.2.2.5.4 Frequency Dithering
        6. 8.2.2.6 Control Loop
          1. 8.2.2.6.1 Feedback Compensator
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Layout Procedure
    2. 10.2 Layout Examples
  11. 11Device and Documentation Support
    1. 11.1 Custom Design With WEBENCH® Tools
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Community Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Current Sense Resistor

When calculating the current sense resistor, the maximum output current capability (IOUT(MAX)) must be at least 20% higher than the required full load current to account for tolerances, ripple current, and load transients. For this example, 120% of the 6.41-A peak inductor current calculated in Inductor Calculation (IPK) is 7.69 A. The current sense resistor value can be calculated using:

Equation 23. LM5141-Q1 equation_22_snvsaj6.gif
Equation 24. LM5141-Q1 equation_23_snvsaj6.gif

where

  • V(CS) is the 75 mV current limit threshold

The RSENSE value selected is 9 mΩ.

Carefully observe the PCB layout guidelines to ensure that noise and DC errors do not corrupt the differential current sense signals between the CS and VOUT pins. Place the sense resistor close to the devices with short, direct traces, creating Kelvin-sense connections between the current-sense resistor and the LM5141-Q1.

The propagation delays through the current limit comparator, logic, and external MOSFET gate drivers allow the peak current to increase above the calculated current limit threshold. For a propagation delay of tdly, the worst-case peak current through the inductor with the output shorted can be calculated from:

Equation 25. LM5141-Q1 equation_24_snvsaj6.gif

From Electrical Characteristics, tdly1 is typically 40 ns.

Equation 26. LM5141-Q1 equation_25_snvsaj6.gif

Once the peak current and the inductance parameters are known, the inductor can be chosen. Select an inductor with a saturation current greater than IpkSCKT (8.81 Apk).