SNVSAP9A March   2017  – February 2018 LM25141-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Simplified Schematic
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Switching Characteristics
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  High Voltage Start-Up Regulator
      2. 7.3.2  VCC Regulator
      3. 7.3.3  Oscillator
      4. 7.3.4  Synchronization
      5. 7.3.5  Frequency Dithering (Spread Spectrum)
      6. 7.3.6  Enable
      7. 7.3.7  Power Good
      8. 7.3.8  Output Voltage
        1. 7.3.8.1 Minimum Output Voltage Adjustment
      9. 7.3.9  Current Sense
      10. 7.3.10 DCR Current Sensing
      11. 7.3.11 Error Amplifier and PWM Comparator
      12. 7.3.12 Slope Compensation
      13. 7.3.13 Hiccup Mode Current Limiting
      14. 7.3.14 Standby Mode
      15. 7.3.15 Soft Start
      16. 7.3.16 Diode Emulation
      17. 7.3.17 High- and Low-Side Drivers
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Custom Design With WEBENCH® Tools
        2. 8.2.2.2 Inductor Calculation
        3. 8.2.2.3 Current Sense Resistor
        4. 8.2.2.4 Output Capacitor
        5. 8.2.2.5 Input Filter
          1. 8.2.2.5.1 EMI Filter Design
          2. 8.2.2.5.2 MOSFET Selection
          3. 8.2.2.5.3 Driver Slew Rate Control
          4. 8.2.2.5.4 Frequency Dithering
        6. 8.2.2.6 Control Loop
          1. 8.2.2.6.1 Feedback Compensator
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Layout Procedure
    2. 10.2 Layout Examples
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Development Support
        1. 11.1.1.1 Custom Design With WEBENCH® Tools
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
        1. 11.2.1.1 PCB Layout Resources
        2. 11.2.1.2 Thermal Design Resources
    3. 11.3 Receiving Notification of Documentation Updates
    4. 11.4 Community Resources
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Feedback Compensator

A type II compensator using an transconductance error amplifier (EA), Gm, is shown in Figure 35. The dominant pole of the EA open-loop gain is set by the EA output resistance, RAMP, and effective bandwidth-limiting capacitance, CO, as follows:

Equation 52. LM25141-Q1 equation_55_snvsaj6.gif

The EA high frequency pole is neglected in the above expression. The compensator transfer function from output voltage to COMP, including the gain contribution from the feedback resistor divider network is:

Equation 53. LM25141-Q1 equation_56_snvsaj6.gif
Equation 54. LM25141-Q1 equation_57_snvsaj6.gif

where

    Which simplifies to:

    Equation 55. LM25141-Q1 equation_59_snvsap9.gif
    LM25141-Q1 transconductance_amplifier_snvsaj6.gifFigure 35. Transconductance Amplifier
    Equation 56. LM25141-Q1 equation_60_snvsaj6.gif
    Equation 57. LM25141-Q1 equation_61_snvsaj6.gif
    Equation 58. LM25141-Q1 equation_62_snvsaj6.gif

    Typically RCOMP << RAMP and CCOMP >> (CHF + CO) so the approximations are valid.

    where

    VREF is the feedback voltage reference (1.2 V)

    Gm is the error amplifier gain transconductance (1200 µS)

    RAMP is the error amplifier output impedance (2.5 MΩ)

    The error amplifier compensation components create a pole at the origin, a zero, and a high frequency pole.

    The procedure for choosing compensation components for a stable closed loop is:

    • Select the desired open-loop gain crossover frequency (fc); for this application 30 kHz was chosen
    • Calculate the RCOMP resistor for the gain crossover frequency at 30 kHz
    • Equation 59. LM25141-Q1 equation_63_snvsaj6.gif
      Equation 60. LM25141-Q1 equation_64_snvsaj6.gif

      The value selected for RCOMP is 22.6 kΩ.

      where

      RDCR = 0.0081 Ω

    • Calculate the CCOMP capacitor value to create a zero that cancels the pole ωpp = 1/RLOAD × COUT)
    • Equation 61. LM25141-Q1 equation_65_snvsaj6.gif
      Equation 62. LM25141-Q1 equation_66_snvsaj6.gif

      The value selected for CCOMP is 10 nF.