SNVSB23 March   2018 LP87521-Q1 , LP87522-Q1 , LP87523-Q1 , LP87524-Q1 , LP87525-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
    1.     Simplified Schematic
  3. Description
    1.     Efficiency vs Output Current
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
    1.     Pin Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 I2C Serial Bus Timing Requirements
    7. 7.7 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Descriptions
      1. 8.3.1 Multi-Phase DC/DC Converters
        1. 8.3.1.1 Overview
        2. 8.3.1.2 Multiphase Operation, Phase Adding, and Phase-Shedding
        3. 8.3.1.3 Transition Between PWM and PFM Modes
        4. 8.3.1.4 Multiphase Switcher Configurations
        5. 8.3.1.5 Buck Converter Load-Current Measurement
        6. 8.3.1.6 Spread-Spectrum Mode
      2. 8.3.2 Sync Clock Functionality
      3. 8.3.3 Power-Up
      4. 8.3.4 Regulator Control
        1. 8.3.4.1 Enabling and Disabling Regulators
        2. 8.3.4.2 Changing Output Voltage
      5. 8.3.5 Enable and Disable Sequences
      6. 8.3.6 Device Reset Scenarios
      7. 8.3.7 Diagnosis and Protection Features
        1. 8.3.7.1 Power-Good Information (PGOOD Pin)
        2. 8.3.7.2 Warnings for Diagnosis (Interrupt)
          1. 8.3.7.2.1 Output Power Limit
          2. 8.3.7.2.2 Thermal Warning
        3. 8.3.7.3 Protection (Regulator Disable)
          1. 8.3.7.3.1 Short-Circuit and Overload Protection
          2. 8.3.7.3.2 Overvoltage Protection
          3. 8.3.7.3.3 Thermal Shutdown
        4. 8.3.7.4 Fault (Power Down)
          1. 8.3.7.4.1 Undervoltage Lockout
      8. 8.3.8 GPIO Signal Operation
      9. 8.3.9 Digital Signal Filtering
    4. 8.4 Device Functional Modes
      1. 8.4.1 Modes of Operation
    5. 8.5 Programming
      1. 8.5.1 I2C-Compatible Interface
        1. 8.5.1.1 Data Validity
        2. 8.5.1.2 Start and Stop Conditions
        3. 8.5.1.3 Transferring Data
        4. 8.5.1.4 I2C-Compatible Chip Address
        5. 8.5.1.5 Auto-Increment Feature
    6. 8.6 Register Maps
      1. 8.6.1 Register Descriptions
        1. 8.6.1.1  OTP_REV
        2. 8.6.1.2  BUCK0_CTRL1
        3. 8.6.1.3  BUCK1_CTRL1
        4. 8.6.1.4  BUCK2_CTRL1
        5. 8.6.1.5  BUCK3_CTRL1
        6. 8.6.1.6  BUCK0_VOUT
        7. 8.6.1.7  BUCK0_FLOOR_VOUT
        8. 8.6.1.8  BUCK1_VOUT
        9. 8.6.1.9  BUCK1_FLOOR_VOUT
        10. 8.6.1.10 BUCK2_VOUT
        11. 8.6.1.11 BUCK2_FLOOR_VOUT
        12. 8.6.1.12 BUCK3_VOUT
        13. 8.6.1.13 BUCK3_FLOOR_VOUT
        14. 8.6.1.14 BUCK0_DELAY
        15. 8.6.1.15 BUCK1_DELAY
        16. 8.6.1.16 BUCK2_DELAY
        17. 8.6.1.17 BUCK3_DELAY
        18. 8.6.1.18 GPIO2_DELAY
        19. 8.6.1.19 GPIO3_DELAY
        20. 8.6.1.20 RESET
        21. 8.6.1.21 CONFIG
        22. 8.6.1.22 INT_TOP1
        23. 8.6.1.23 INT_TOP2
        24. 8.6.1.24 INT_BUCK_0_1
        25. 8.6.1.25 INT_BUCK_2_3
        26. 8.6.1.26 TOP_STAT
        27. 8.6.1.27 BUCK_0_1_STAT
        28. 8.6.1.28 BUCK_2_3_STAT
        29. 8.6.1.29 TOP_MASK1
        30. 8.6.1.30 TOP_MASK2
        31. 8.6.1.31 BUCK_0_1_MASK
        32. 8.6.1.32 BUCK_2_3_MASK
        33. 8.6.1.33 SEL_I_LOAD
        34. 8.6.1.34 I_LOAD_2
        35. 8.6.1.35 I_LOAD_1
        36. 8.6.1.36 PGOOD_CTRL1
        37. 8.6.1.37 PGOOD_CTRL2
        38. 8.6.1.38 PGOOD_FLT
        39. 8.6.1.39 PLL_CTRL
        40. 8.6.1.40 PIN_FUNCTION
        41. 8.6.1.41 GPIO_CONFIG
        42. 8.6.1.42 GPIO_IN
        43. 8.6.1.43 GPIO_OUT
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 Design Requirements
        1. 9.2.1.1 Inductor Selection
        2. 9.2.1.2 Input Capacitor Selection
        3. 9.2.1.3 Output Capacitor Selection
        4. 9.2.1.4 Snubber Components
        5. 9.2.1.5 Supply Filtering Components
        6. 9.2.1.6 Current Limit vs. Maximum Output Current
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Related Links
    4. 12.4 Receiving Notification of Documentation Updates
    5. 12.5 Community Resources
    6. 12.6 Trademarks
    7. 12.7 Electrostatic Discharge Caution
    8. 12.8 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Output Capacitor Selection

The output capacitors COUT0, COUT1, COUT2, and COUT3 are shown in Typical Applications. A ceramic local output capacitor of 22 μF is required per phase. Use ceramic capacitors, X7R or X7T types; do not use Y5V or F. DC bias voltage characteristics of ceramic capacitors must be considered. The output filter capacitor smooths out current flow from the inductor to the load, helps keep a steady output voltage during transient load changes and decreases output voltage ripple. These capacitors must be selected with sufficient capacitance and sufficiently low ESR and ESL to do these functions. The minimum effective output capacitance to make sure performance is good is 10 μF for each phase including the DC voltage roll-off, tolerances, aging and temperature effects.

The output voltage ripple is caused by the charging and discharging of the output capacitor and also due to its RESR. The RESR is frequency dependent (as well as temperature dependent); make sure the value used for selection process is at the switching frequency of the part. See Table 12.

POL capacitors (CPOL0, CPOL1, CPOL2, CPOL3) can be used to improve load transient performance and to decrease the ripple voltage. A higher output capacitance improves the load step behavior and decreases the output voltage ripple as well as decreases the PFM switching frequency. However, output capacitance higher than 100 µF per phase is not necessarily of any benefit. Note that the output capacitor may be the limiting factor in the output voltage ramp and the maximum total output capacitance listed in electrical characteristics for the specified slew rate must not be exceeded. At shutdown the output voltage is discharged to 0.6 V level using forced-PWM operation. This can increase the input voltage if the load current is small and the output capacitor is large. Below 0.6 V level the output capacitor is discharged by the internal discharge resistor and with large capacitor more time is required to settle VOUT down as a consequence of the increased time constant.

Table 12. Recommended Output Capacitors (X7R or X7T Dielectric)

MANUFACTURER PART NUMBER VALUE CASE SIZE DIMENSIONS L × W × H (mm) VOLTAGE RATING (V)
Murata GCM31CR71A226KE02 22 µF (10%) 1206 3.2 × 1.6 × 1.6 10