SNVSB48C April   2018  – October 2019 LMR36006

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Simplified Schematic
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
    1.     Pin Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Requirements
    7. 7.7 System Characteristics
    8. 7.8 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Power-Good Flag Output
      2. 8.3.2 Enable and Start-up
      3. 8.3.3 Current Limit and Short Circuit
      4. 8.3.4 Undervoltage Lockout and Thermal Shutdown
    4. 8.4 Device Functional Modes
      1. 8.4.1 Auto Mode
      2. 8.4.2 Dropout
      3. 8.4.3 Minimum Switch On-Time
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design 1: Low Power 24-V, 600-mA PFM Converter
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1  Custom Design With WEBENCH Tools
          2. 9.2.1.2.2  Choosing the Switching Frequency
          3. 9.2.1.2.3  Setting the Output Voltage
          4. 9.2.1.2.4  Inductor Selection
          5. 9.2.1.2.5  Output Capacitor Selection
          6. 9.2.1.2.6  Input Capacitor Selection
          7. 9.2.1.2.7  CBOOT
          8. 9.2.1.2.8  VCC
          9. 9.2.1.2.9  CFF Selection
            1. 9.2.1.2.9.1 External UVLO
          10. 9.2.1.2.10 Maximum Ambient Temperature
      2. 9.2.2 Application Curves
      3. 9.2.3 Design 2: High Density 24-V, 600-mA PFM Converter
        1. 9.2.3.1 Design Requirements
        2. 9.2.3.2 Application Curves
    3. 9.3 What to Do and What Not to Do
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 Ground and Thermal Considerations
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Development Support
        1. 12.1.1.1 Custom Design With WEBENCH® Tools
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Receiving Notification of Documentation Updates
    4. 12.4 Support Resources
    5. 12.5 Trademarks
    6. 12.6 Electrostatic Discharge Caution
    7. 12.7 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

CFF Selection

In some cases a feed-forward capacitor can be used across RFBT to improve the load transient response or improve the loop-phase margin. This is especially true when values of RFBT > 100 kΩ are used. Large values of RFBT, in combination with the parasitic capacitance at the FB pin, can create a small signal pole that interferes with the loop stability. A CFF can help to mitigate this effect. Equation 9 can be used to estimate the value of CFF. The value found with Equation 9 is a starting point; use lower values to determine if any advantage is gained by the use of a CFF capacitor. The Optimizing Transient Response of Internally Compensated DC-DC Converters with Feed-forward Capacitor Application Report is helpful when experimenting with a feed-forward capacitor.

Equation 9. LMR36006 CFF_eq3.gif