SNVSBW0B October   2022  – August 2024 LM64440-Q1 , LM64460-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
    1. 5.1 Wettable Flanks
    2. 5.2 Pinout Design for Clearance and FMEA
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Characteristics
    7. 6.7 Systems Characteristics
    8. 6.8 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Input Voltage Range (VIN1, VIN2)
      2. 7.3.2  Output Voltage Setpoint (FB)
      3. 7.3.3  Precision Enable and Input Voltage UVLO (EN)
      4. 7.3.4  MODE/SYNC Operation
        1. 7.3.4.1 Level-Dependent MODE/SYNC Control
        2. 7.3.4.2 Pulse-Dependent MODE/SYNC Control
      5. 7.3.5  Clock Locking
      6. 7.3.6  Power-Good Monitor (PGOOD)
      7. 7.3.7  Bias Supply Regulator (VCC, BIAS)
      8. 7.3.8  Bootstrap Voltage and UVLO (CBOOT)
      9. 7.3.9  Spread Spectrum
      10. 7.3.10 Soft Start and Recovery From Dropout
      11. 7.3.11 Overcurrent and Short-Circuit Protection
      12. 7.3.12 Thermal Shutdown
      13. 7.3.13 Input Supply Current
    4. 7.4 Device Functional Modes
      1. 7.4.1 Shutdown Mode
      2. 7.4.2 Standby Mode
      3. 7.4.3 Active Mode
        1. 7.4.3.1 CCM Mode
        2. 7.4.3.2 AUTO Mode – Light-Load Operation
          1. 7.4.3.2.1 Diode Emulation
          2. 7.4.3.2.2 Frequency Foldback
        3. 7.4.3.3 FPWM Mode – Light-Load Operation
        4. 7.4.3.4 Minimum On-Time (High Input Voltage) Operation
        5. 7.4.3.5 Dropout
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 Design 1 – Automotive Synchronous 6A Buck Regulator at 2.1MHz
        1. 8.2.1.1 Design Requirements
      2. 8.2.2 Design 2 – Automotive Synchronous 4A Buck Regulator at 2.1MHz
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
          1. 8.2.2.2.1  Custom Design With WEBENCH® Tools
          2. 8.2.2.2.2  Setting the Output Voltage
          3. 8.2.2.2.3  Choosing the Switching Frequency
          4. 8.2.2.2.4  Inductor Selection
          5. 8.2.2.2.5  Output Capacitor Selection
          6. 8.2.2.2.6  Input Capacitor Selection
          7. 8.2.2.2.7  Bootstrap Capacitor
          8. 8.2.2.2.8  VCC Capacitor
          9. 8.2.2.2.9  BIAS Power Connection
          10. 8.2.2.2.10 Feedforward Network
          11. 8.2.2.2.11 Input Voltage UVLO
        3. 8.2.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
        1. 8.4.1.1 Thermal Design and Layout
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Third-Party Products Disclaimer
      2. 9.1.2 Development Support
        1. 9.1.2.1 Custom Design With WEBENCH® Tools
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 Receiving Notification of Documentation Updates
    4. 9.4 Support Resources
    5. 9.5 Trademarks
    6. 9.6 Electrostatic Discharge Caution
    7. 9.7 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information
    1. 11.1 Tape and Reel Information

Precision Enable and Input Voltage UVLO (EN)

The EN input supports adjustable input undervoltage lockout (UVLO) programmed by resistor values for application-specific power-up and power-down requirements. Also, an external logic signal can be used to drive the EN input to toggle the output ON or OFF and for system sequencing or protection.

The LM644x0-Q1 enters a low-IQ shutdown mode when EN is pulled below 0.4V. The internal LDO regulator powers off, shutting down the bias currents of the LM644x0-Q1. When the EN voltage is between the hard shutdown and the precision enable thresholds, the LM644x0-Q1 operates in standby mode with the VCC voltage in regulation. After the voltage at EN is above VEN-TH, the converter begins to switch normally, provided the input voltage drives the internal VCC above the rising UVLO threshold of 3.6V (typical).

The EN pin cannot be left floating. The simplest way to enable operation is to connect the EN pin to VIN, allowing self-start-up of the LM644x0-Q1. However, many applications benefit from the use of a divider network from VIN to EN as shown in Figure 7-1, which establishes a precision input voltage UVLO. This can be used for sequencing, to prevent re-triggering of the device when used with long input cables, or to reduce the occurrence of deep discharge of a battery power source. Note that the precision enable threshold, VEN-TH, has a 28% hysteresis to prevent ON/OFF re-triggering. An external logic output of another IC can also be used to drive EN, allowing system power sequencing.

Calculate the resistor divider values using Equation 2. See Input Voltage UVLO for additional information.

Equation 2. LM64440-Q1 LM64460-Q1

where

  • VIN(on) is the required input voltage turn-on threshold.