SNVSBW0B October   2022  – August 2024 LM64440-Q1 , LM64460-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
    1. 5.1 Wettable Flanks
    2. 5.2 Pinout Design for Clearance and FMEA
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Characteristics
    7. 6.7 Systems Characteristics
    8. 6.8 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Input Voltage Range (VIN1, VIN2)
      2. 7.3.2  Output Voltage Setpoint (FB)
      3. 7.3.3  Precision Enable and Input Voltage UVLO (EN)
      4. 7.3.4  MODE/SYNC Operation
        1. 7.3.4.1 Level-Dependent MODE/SYNC Control
        2. 7.3.4.2 Pulse-Dependent MODE/SYNC Control
      5. 7.3.5  Clock Locking
      6. 7.3.6  Power-Good Monitor (PGOOD)
      7. 7.3.7  Bias Supply Regulator (VCC, BIAS)
      8. 7.3.8  Bootstrap Voltage and UVLO (CBOOT)
      9. 7.3.9  Spread Spectrum
      10. 7.3.10 Soft Start and Recovery From Dropout
      11. 7.3.11 Overcurrent and Short-Circuit Protection
      12. 7.3.12 Thermal Shutdown
      13. 7.3.13 Input Supply Current
    4. 7.4 Device Functional Modes
      1. 7.4.1 Shutdown Mode
      2. 7.4.2 Standby Mode
      3. 7.4.3 Active Mode
        1. 7.4.3.1 CCM Mode
        2. 7.4.3.2 AUTO Mode – Light-Load Operation
          1. 7.4.3.2.1 Diode Emulation
          2. 7.4.3.2.2 Frequency Foldback
        3. 7.4.3.3 FPWM Mode – Light-Load Operation
        4. 7.4.3.4 Minimum On-Time (High Input Voltage) Operation
        5. 7.4.3.5 Dropout
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 Design 1 – Automotive Synchronous 6A Buck Regulator at 2.1MHz
        1. 8.2.1.1 Design Requirements
      2. 8.2.2 Design 2 – Automotive Synchronous 4A Buck Regulator at 2.1MHz
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
          1. 8.2.2.2.1  Custom Design With WEBENCH® Tools
          2. 8.2.2.2.2  Setting the Output Voltage
          3. 8.2.2.2.3  Choosing the Switching Frequency
          4. 8.2.2.2.4  Inductor Selection
          5. 8.2.2.2.5  Output Capacitor Selection
          6. 8.2.2.2.6  Input Capacitor Selection
          7. 8.2.2.2.7  Bootstrap Capacitor
          8. 8.2.2.2.8  VCC Capacitor
          9. 8.2.2.2.9  BIAS Power Connection
          10. 8.2.2.2.10 Feedforward Network
          11. 8.2.2.2.11 Input Voltage UVLO
        3. 8.2.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
        1. 8.4.1.1 Thermal Design and Layout
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Third-Party Products Disclaimer
      2. 9.1.2 Development Support
        1. 9.1.2.1 Custom Design With WEBENCH® Tools
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 Receiving Notification of Documentation Updates
    4. 9.4 Support Resources
    5. 9.5 Trademarks
    6. 9.6 Electrostatic Discharge Caution
    7. 9.7 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information
    1. 11.1 Tape and Reel Information

Systems Characteristics

The following values are specified by design provided that the component values in the typical application circuit are used.  Limits apply over the junction temperature range of –40°C to +150°C, unless otherwise noted. Minimum and Maximum limits are derived using test, design or statistical correlation. Typical values represent the most likely parametric norm at TJ = 25°C, and are provided for reference purposes only. Unless otherwise stated the following conditions apply: VIN = 13.5V.  VIN1 shorted to VIN2 = VIN.  VOUT is output setting. These parameters are not tested in production.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
EFFICIENCY
ƞ5V_2p1MHz Typical 2.1MHz efficiency        VOUT = 5V, IOUT = 6A, LM64460-Q1 92.5%
VOUT = 5V, IOUT = 4A, LM64440-Q1  93%
VOUT = 5V, IOUT = 100µA, RFBT = 1MΩ 73%
ƞ3p3V_2p1MHz Typical 2.1MHz efficiency VOUT = 3.3V, IOUT = 6A, LM64460-Q1 90%
VOUT = 3.3V, IOUT = 4A, LM64440-Q1 91%
VOUT = 3.3V, IOUT = 100µA, RFBT = 1MΩ 71%
RANGE OF OPERATION
VVIN_MIN1 VIN for full functionality at reduced load, after start-up VOUT set to 3.3V 3.0 V
VVIN_MIN2 VIN for full functionality at 100% of maximum rated load, after start-up VOUT set to 3.3V 3.95 V
IQ-VIN Operating quiescent current(1) VOUT = 3.3V, IOUT = 0A, AUTO mode, RFBT = 1MΩ 7 µA
VOUT = 5V, IOUT = 0A, AUTO mode, RFBT = 1MΩ 10
VOUT5 Output voltage for 5V factory option   
 
VIN = 5.8V to 36V, IOUT = 6A, LM64460-Q1 or IOUT = 4A, LM64440-Q1 4.9 5 5.1 V
AUTO mode factory option, VIN = 5.5V to 36V, IOUT = 100µA to 100mA 4.9 5.05 5.125
VOUT3 Output voltage for 3.3V factory option VIN = 3.9V to 36V, IOUT = 6A, LM64460-Q1 or IOUT = 4A, LM64440-Q1 3.24 3.3 3.35 V
VIN = 3.9V to 36V, IOUT = 100µA to 100mA 3.24 3.33 3.38
VDROP1 Input-to-output voltage differential to maintain regulation accuracy without inductor DCR drop VOUT = 3.3V, IOUT = 4A, –3% output accuracy at 25°C 0.4 V
VOUT = 3.3V, IOUT = 4A, –3% output accuracy at 125°C 0.55
VDROP2 Input-to-output voltage differential to maintain fSW ≥ 1.85MHz, without inductor DCR drop VOUT = 3.3V, IOUT = 4A, –3% regulation accuracy at 25°C 0.8 V
VOUT = 3.3V, IOUT = 4A, –3% regulation accuracy at 125°C 1.2
DMAX Maximum switch duty cycle fSW = 1.85MHz 87%
While in frequency foldback 98%
See detailed Input Supply Current for the meaning of this specification and how it can be calculated.