SNVSBX7A September   2023  – June 2024 LM70840-Q1 , LM70860-Q1 , LM70880-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Description (continued)
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Input Voltage Range (VIN)
      2. 7.3.2  High-Voltage Bias Supply Regulator (VCC, BIAS, VDDA)
      3. 7.3.3  Enable (EN)
      4. 7.3.4  Power-Good Monitor (PG)
      5. 7.3.5  Switching Frequency (RT)
      6. 7.3.6  Dual Random Spread Spectrum (DRSS)
      7. 7.3.7  Soft Start
      8. 7.3.8  Output Voltage Setpoint (FB)
      9. 7.3.9  Minimum Controllable On-Time
      10. 7.3.10 Error Amplifier and PWM Comparator (FB, EXTCOMP)
      11. 7.3.11 Slope Compensation
      12. 7.3.12 Shunt Current Sensing
      13. 7.3.13 Hiccup Mode Current Limiting
      14. 7.3.14 Device Configuration (CONFIG)
      15. 7.3.15 Single-Output Dual-phase Operation
      16. 7.3.16 Pulse Frequency Modulation (PFM) / Synchronization
      17. 7.3.17 Thermal Shutdown (TSD)
    4. 7.4 Device Functional Modes
      1. 7.4.1 Shutdown Mode
      2. 7.4.2 Standby Mode
      3. 7.4.3 Active Mode
      4. 7.4.4 Sleep Mode
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Power Train Components
        1. 8.1.1.1 Buck Inductor
        2. 8.1.1.2 Output Capacitors
        3. 8.1.1.3 Input Capacitors
        4. 8.1.1.4 EMI Filter
      2. 8.1.2 Error Amplifier and Compensation
      3. 8.1.3 Maximum Ambient Temperature
        1. 8.1.3.1 Derating Curves
    2. 8.2 Typical Applications
      1. 8.2.1 Design 1 – High Efficiency, Wide Input, 400-kHz Synchronous Buck Regulator
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Custom Design With WEBENCH® Tools
          2. 8.2.1.2.2 Custom Design With Excel Quickstart Tool
          3. 8.2.1.2.3 Buck Inductor
          4. 8.2.1.2.4 Current-Sense Resistance
          5. 8.2.1.2.5 Output Capacitors
          6. 8.2.1.2.6 Input Capacitors
          7. 8.2.1.2.7 Frequency Set Resistor
          8. 8.2.1.2.8 Feedback Resistors
          9. 8.2.1.2.9 Compensation Components
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Design 2 – High Efficiency 48V to 12V 400kHz Synchronous Buck Regulator
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
        3. 8.2.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Thermal Design and Layout
      3. 8.4.3 Layout Example
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Development Support
        1. 9.1.1.1 Custom Design With WEBENCH® Tools
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
        1. 9.2.1.1 PCB Layout Resources
        2. 9.2.1.2 Thermal Design Resources
    3. 9.3 Receiving Notification of Documentation Updates
    4. 9.4 Support Resources
    5. 9.5 Trademarks
    6. 9.6 Electrostatic Discharge Caution
    7. 9.7 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information
    1. 11.1 Tape and Reel Information

Error Amplifier and Compensation

A Type-ll compensator using a transconductance error amplifier (EA) is shown in Figure 8-3. The dominant pole of the EA open-loop gain is set by the EA output resistance, ROEA, and effective bandwidth-limiting capacitance, CBW as shown by Equation 23.

Equation 23. LM70840-Q1 LM70860-Q1 LM70880-Q1
Equation 24. GEAopenloops = - gm×ROEA1+s×ROEA×CBW

The EA high-frequency pole is neglected in the above expression. The compensator transfer function from output voltage to COMP node, including the gain contribution from the (internal or external) feedback resistor network, is calculated in Equation 25.

Equation 25. G c s   = v ^ c ( s ) v ^ o u t ( s )   =   -   V R E F V O U T   ×   g m × R O E A × 1 + s ω z 1 1 + s ω p 1 × 1 + s ω p 2

where

  • VREF is the feedback voltage reference of 0.8V
  • gm is the EA gain transconductance of 1200µS
  • RO-EA is the error amplifier output impedance of 64MΩ
Equation 26. ω z 1 = 1 R C O M P × C C O M P
Equation 27. ω p 1 = 1 R O E A × C C O M P + C H F + C B W   1 R O E A × C C O M P
Equation 28. ω p 2 = 1 R C O M P × C C O M P   | |   C H F + C B W   1 R C O M P × C H F

The EA compensation components create a pole close to the origin, a zero, and a high-frequency pole. Typically, RCOMP << RO-EA and CCOMP >> CBW and CHF, so the approximations are valid.Figure 8-3 circles the poles in red and the zero in blue.

LM70840-Q1 LM70860-Q1 LM70880-Q1  Error
                    Amplifier and Compensation Network Figure 8-3 Error Amplifier and Compensation Network