SNVSCG7 November   2024 LM5190

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1  Input Voltage Range (VIN)
      2. 6.3.2  High-Voltage Bias Supply Regulator (VCC, BIAS)
      3. 6.3.3  Precision Enable (EN)
      4. 6.3.4  Power-Good Monitor (PGOOD)
      5. 6.3.5  Switching Frequency (RT)
      6. 6.3.6  Low Dropout Mode
      7. 6.3.7  Dual Random Spread Spectrum (DRSS)
      8. 6.3.8  Soft Start
      9. 6.3.9  Output Voltage Setpoint (FB)
      10. 6.3.10 Minimum Controllable On Time
      11. 6.3.11 Inductor Current Sense (ISNS+, VOUT)
      12. 6.3.12 Voltage Loop Error Amplifier
      13. 6.3.13 Current Monitor, Programmable Current Limit, and Current Loop Error Amplifier (IMON/ILIM, ISET)
      14. 6.3.14 Dual Loop Architecture
      15. 6.3.15 PWM Comparator
      16. 6.3.16 Slope Compensation
      17. 6.3.17 Hiccup Mode Current Limiting
      18. 6.3.18 High-Side and Low-Side Gate Drivers (HO, LO)
    4. 6.4 Device Functional Modes
      1. 6.4.1 Sleep Mode
      2. 6.4.2 Forced PWM Mode and Synchronization (FPWM/SYNC)
      3. 6.4.3 Thermal Shutdown
  8. Application and Implementation
    1. 7.1 Application Information
      1. 7.1.1 Power Train Components
        1. 7.1.1.1 Buck Inductor
        2. 7.1.1.2 Output Capacitors
        3. 7.1.1.3 Input Capacitors
        4. 7.1.1.4 Power MOSFETs
        5. 7.1.1.5 EMI Filter
      2. 7.1.2 Error Amplifier and Compensation
    2. 7.2 Typical Applications
      1. 7.2.1 High Efficiency 400kHz CC-CV Regulator
        1. 7.2.1.1 Design Requirements
        2. 7.2.1.2 Detailed Design Procedure
          1. 7.2.1.2.1 Buck Inductor
          2. 7.2.1.2.2 Current-Sense Resistance
          3. 7.2.1.2.3 Output Capacitors
          4. 7.2.1.2.4 Input Capacitors
          5. 7.2.1.2.5 Frequency Set Resistor
          6. 7.2.1.2.6 Feedback Resistors
        3. 7.2.1.3 Application Curves
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
        1. 7.4.1.1 Power Stage Layout
        2. 7.4.1.2 Gate-Drive Layout
        3. 7.4.1.3 PWM Controller Layout
        4. 7.4.1.4 Thermal Design and Layout
        5. 7.4.1.5 Ground Plane Design
      2. 7.4.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 Device Support
      1. 8.1.1 Development Support
    2. 8.2 Documentation Support
      1. 8.2.1 Related Documentation
        1. 8.2.1.1 PCB Layout Resources
        2. 8.2.1.2 Thermal Design Resources
    3. 8.3 Receiving Notification of Documentation Updates
    4. 8.4 Support Resources
    5. 8.5 Trademarks
    6. 8.6 Electrostatic Discharge Caution
    7. 8.7 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

PWM Controller Layout

Locate the device as close as possible to the power MOSFETs to minimize gate driver trace runs, the components related to the analog and feedback signals as well as current sensing are considered in the following:

  • Separate power and signal/analog traces, and use a ground plane to provide noise shielding.
  • Place all sensitive analog traces and components related to COMP, FB, ISNS+, IMON, ISET, and RT away from high-voltage switching nodes such as SW, HO, LO, or CBOOT to avoid mutual coupling. Use internal layer or layers as ground plane or planes. Pay particular attention to shielding the feedback (FB) and current sense (ISNS+ and VOUT) traces from power traces and components.
  • Locate the upper and lower feedback resistors close to the FB pin, keeping the FB trace as short as possible. Route the trace from the upper feedback resistor to the required output voltage sense point at the load.
  • Route the ISNS+ and VOUT sense traces as differential pairs to minimize noise pickup and use Kelvin connections to the applicable shunt resistor.
  • Minimize the loop area from the VCC and VIN pins through the respective decoupling capacitors to the PGND pin. Locate these capacitors as close as possible to the device.