SNVSCU2A August   2024  – August 2024 LM5137-Q1

ADVANCE INFORMATION  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
    1. 5.1 Wettable Flanks
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Input Voltage Range (VIN)
      2. 7.3.2  Bias Supply Regulator (VCC, BIAS1/VOUT1, VDDA)
      3. 7.3.3  Precision Enable (EN1, EN2)
      4. 7.3.4  Switching Frequency (RT)
      5. 7.3.5  Pulse Frequency Modulation and Synchronization (PFM/SYNC)
      6. 7.3.6  Synchronization Out (SYNCOUT)
      7. 7.3.7  Dual Random Spread Spectrum (DRSS)
      8. 7.3.8  Configurable Soft Start (RSS)
      9. 7.3.9  Output Voltage Setpoints (FB1, FB2)
      10. 7.3.10 Minimum Controllable On-Time
      11. 7.3.11 Error Amplifier and PWM Comparator (FB1, FB2, COMP1, COMP2)
        1. 7.3.11.1 Slope Compensation
      12. 7.3.12 Inductor Current Sense (ISNS1+, BIAS1/VOUT1, ISNS2+, VOUT2)
        1. 7.3.12.1 Shunt Current Sensing
        2. 7.3.12.2 Inductor DCR Current Sensing
      13. 7.3.13 MOSFET Gate Drivers (HO1, HO2, LO1, LO2)
      14. 7.3.14 Output Configurations (CNFG)
        1. 7.3.14.1 Independent Dual-Output Operation
        2. 7.3.14.2 Single-Output Interleaved Operation
        3. 7.3.14.3 Single-Output Multiphase Operation
    4. 7.4 Device Functional Modes
      1. 7.4.1 Sleep Mode
      2. 7.4.2 PFM Mode
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Power Train Components
        1. 8.1.1.1 Power MOSFETs
        2. 8.1.1.2 Buck Inductor
        3. 8.1.1.3 Output Capacitors
        4. 8.1.1.4 Input Capacitors
        5. 8.1.1.5 EMI Filter
      2. 8.1.2 Error Amplifier and Compensation
    2. 8.2 Typical Applications
      1. 8.2.1 Design 1 – Dual 5V and 3.3V, 20A Buck Regulator for 12V Automotive Battery Applications
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Custom Design With WEBENCH® Tools
          2. 8.2.1.2.2 Custom Design With Excel Quickstart Tool
          3. 8.2.1.2.3 Inductor Calculations
          4. 8.2.1.2.4 Shunt Resistors
          5. 8.2.1.2.5 Ceramic Output Capacitors
          6. 8.2.1.2.6 Ceramic Input Capacitors
          7. 8.2.1.2.7 Feedback Resistors
          8. 8.2.1.2.8 Input Voltage UVLO Resistors
          9. 8.2.1.2.9 Compensation Components
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Design 2 – Two-Phase, Single-Output Buck Regulator for Automotive ADAS Applications
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
      3. 8.2.3 Design 3 – 12V, 20A, 400kHz, Two-Phase Buck Regulator for 48V Automotive Applications
        1. 8.2.3.1 Design Requirements
        2. 8.2.3.2 Detailed Design Procedure
        3. 8.2.3.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
        1. 8.4.1.1 Power Stage Layout
        2. 8.4.1.2 Gate Drive Layout
        3. 8.4.1.3 PWM Controller Layout
        4. 8.4.1.4 Thermal Design and Layout
        5. 8.4.1.5 Ground Plane Design
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Third-Party Products Disclaimer
      2. 9.1.2 Development Support
        1. 9.1.2.1 Custom Design With WEBENCH® Tools
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
        1. 9.2.1.1 PCB Layout Resources
        2. 9.2.1.2 Thermal Design Resources
    3. 9.3 Receiving Notification of Documentation Updates
    4. 9.4 Support Resources
    5. 9.5 Trademarks
    6. 9.6 Electrostatic Discharge Caution
    7. 9.7 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information
    1. 11.1 Tape and Reel Information
Shunt Resistors
  1. Calculate the shunt resistance based on a maximum peak current capability at least 20% higher than the peak inductor current at full load to provide sufficient margin during startup and load-step transients. Calculate the shunt resistances using Equation 32.
    Equation 32. LM5137-Q1

    where

    • VCS(th) is the 60mV current limit threshold.
  2. Select a standard resistance value of 2mΩ for both shunts. A 1225 footprint component with wide aspect ratio termination design provides a 3W power rating, parasitic inductance (ESL) less than 1nH, and compact PCB layout. Carefully adhere to the layout guidelines in Section 8.4.1 to make sure that noise and DC errors do not corrupt the current-sense voltages measured differentially at the [ISNS1+, VOUT1] and [ISNS2+, VOUT2] pins.
  3. Place the shunt resistor close to the inductor.
  4. Use Kelvin sense connections and route the sense lines differentially from the shunt to the applicable pins of the LM5137-Q1.
  5. The current-sense-to-output propagation delay (related to the current limit comparator, internal logic and power MOSFET gate drivers) causes the peak current to increase above the calculated current limit threshold. For a total propagation delay of tCS-DELAY of 70ns, use Equation 33 to calculate the worst-case peak inductor current with the output shorted.
    Equation 33. LM5137-Q1
  6. Based on this result, select an inductor for each channel with saturation current greater than 33A across the full operating temperature range.