SPNS176C April   2012  – June 2015 RM48L530 , RM48L730

PRODUCTION DATA.  

  1. 1Device Overview
    1. 1.1 Features
    2. 1.2 Applications
    3. 1.3 Description
    4. 1.4 Functional Block Diagram
  2. 2Revision History
  3. 3Device Comparison
  4. 4Terminal Configuration and Functions
    1. 4.1 PGE QFP Package Pinout (144-Pin)
    2. 4.2 ZWT BGA Package Ball-Map (337-Ball Grid Array)
    3. 4.3 Terminal Functions
      1. 4.3.1 PGE Package
        1. 4.3.1.1  Multibuffered Analog-to-Digital Converters (MibADCs)
        2. 4.3.1.2  Enhanced Next Generation High-End Timer (N2HET) Modules
        3. 4.3.1.3  General-Purpose Input/Output (GPIO)
        4. 4.3.1.4  Controller Area Network Controllers (DCANs)
        5. 4.3.1.5  Local Interconnect Network Interface Module (LIN)
        6. 4.3.1.6  Standard Serial Communication Interface (SCI)
        7. 4.3.1.7  Inter-Integrated Circuit Interface Module (I2C)
        8. 4.3.1.8  Standard Serial Peripheral Interface (SPI)
        9. 4.3.1.9  Multibuffered Serial Peripheral Interface Modules (MibSPI)
        10. 4.3.1.10 USB Host and Device Port Controller Interface
        11. 4.3.1.11 System Module Interface
        12. 4.3.1.12 Clock Inputs and Outputs
        13. 4.3.1.13 Test and Debug Modules Interface
        14. 4.3.1.14 Flash Supply and Test Pads
        15. 4.3.1.15 Supply for Core Logic: 1.2-V Nominal
        16. 4.3.1.16 Supply for I/O Cells: 3.3-V Nominal
        17. 4.3.1.17 Ground Reference for All Supplies Except VCCAD
      2. 4.3.2 ZWT Package
        1. 4.3.2.1  Multibuffered Analog-to-Digital Converters (MibADCs)
        2. 4.3.2.2  Enhanced Next Generation High-End Timer (N2HET) Modules
        3. 4.3.2.3  General-Purpose Input/Output (GPIO)
        4. 4.3.2.4  Controller Area Network Controllers (DCANs)
        5. 4.3.2.5  Local Interconnect Network Interface Module (LIN)
        6. 4.3.2.6  Standard Serial Communication Interface (SCI)
        7. 4.3.2.7  Inter-Integrated Circuit Interface Module (I2C)
        8. 4.3.2.8  Standard Serial Peripheral Interface (SPI)
        9. 4.3.2.9  Multibuffered Serial Peripheral Interface Modules (MibSPI)
        10. 4.3.2.10 USB Host and Device Port Controller Interface
        11. 4.3.2.11 External Memory Interface (EMIF)
        12. 4.3.2.12 Embedded Trace Macrocell for Cortex-R4F CPU (ETM-R4F)
        13. 4.3.2.13 RAM Trace Port (RTP)
        14. 4.3.2.14 Data Modification Module (DMM)
        15. 4.3.2.15 System Module Interface
        16. 4.3.2.16 Clock Inputs and Outputs
        17. 4.3.2.17 Test and Debug Modules Interface
        18. 4.3.2.18 Flash Supply and Test Pads
        19. 4.3.2.19 Reserved
        20. 4.3.2.20 No Connects
        21. 4.3.2.21 Supply for Core Logic: 1.2-V Nominal
        22. 4.3.2.22 Supply for I/O Cells: 3.3-V Nominal
        23. 4.3.2.23 Ground Reference for All Supplies Except VCCAD
  5. 5Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Power-On Hours (POH)
    4. 5.4  Recommended Operating Conditions
    5. 5.5  Switching Characteristics for Clock Domains
    6. 5.6  Wait States Required
    7. 5.7  Power Consumption
    8. 5.8  Input/Output Electrical Characteristics
    9. 5.9  Thermal Resistance Characteristics
    10. 5.10 Output Buffer Drive Strengths
    11. 5.11 Input Timings
    12. 5.12 Output Timings
    13. 5.13 Low-EMI Output Buffers
  6. 6System Information and Electrical Specifications
    1. 6.1  Device Power Domains
    2. 6.2  Voltage Monitor Characteristics
      1. 6.2.1 Important Considerations
      2. 6.2.2 Voltage Monitor Operation
      3. 6.2.3 Supply Filtering
    3. 6.3  Power Sequencing and Power On Reset
      1. 6.3.1 Power-Up Sequence
      2. 6.3.2 Power-Down Sequence
      3. 6.3.3 Power-On Reset: nPORRST
        1. 6.3.3.1 nPORRST Electrical and Timing Requirements
    4. 6.4  Warm Reset (nRST)
      1. 6.4.1 Causes of Warm Reset
      2. 6.4.2 nRST Timing Requirements
    5. 6.5  ARM Cortex-R4F CPU Information
      1. 6.5.1 Summary of ARM Cortex-R4F CPU Features
      2. 6.5.2 ARM Cortex-R4F CPU Features Enabled by Software
      3. 6.5.3 Dual Core Implementation
      4. 6.5.4 Duplicate Clock Tree After GCLK
      5. 6.5.5 ARM Cortex-R4F CPU Compare Module (CCM-R4) for Safety
      6. 6.5.6 CPU Self-Test
        1. 6.5.6.1 Application Sequence for CPU Self-Test
        2. 6.5.6.2 CPU Self-Test Clock Configuration
        3. 6.5.6.3 CPU Self-Test Coverage
    6. 6.6  Clocks
      1. 6.6.1 Clock Sources
        1. 6.6.1.1 Main Oscillator
          1. 6.6.1.1.1 Timing Requirements for Main Oscillator
        2. 6.6.1.2 Low-Power Oscillator (LPO)
          1. 6.6.1.2.1 Features
          2. 6.6.1.2.2 LPO Electrical and Timing Specifications
        3. 6.6.1.3 Phase Locked Loop (PLL) Clock Modules
          1. 6.6.1.3.1 Block Diagram
          2. 6.6.1.3.2 PLL Timing Specifications
        4. 6.6.1.4 External Clock Inputs
      2. 6.6.2 Clock Domains
        1. 6.6.2.1 Clock Domain Descriptions
        2. 6.6.2.2 Mapping of Clock Domains to Device Modules
      3. 6.6.3 Clock Test Mode
    7. 6.7  Clock Monitoring
      1. 6.7.1 Clock Monitor Timings
      2. 6.7.2 External Clock (ECLK) Output Functionality
      3. 6.7.3 Dual Clock Comparators
        1. 6.7.3.1 Features
        2. 6.7.3.2 Mapping of DCC Clock Source Inputs
    8. 6.8  Glitch Filters
    9. 6.9  Device Memory Map
      1. 6.9.1 Memory Map Diagram
      2. 6.9.2 Memory Map Table
      3. 6.9.3 Master/Slave Access Privileges
        1. 6.9.3.1 Special Notes on Accesses to Certain Slaves
      4. 6.9.4 POM Overlay Considerations
    10. 6.10 Flash Memory
      1. 6.10.1 Flash Memory Configuration
      2. 6.10.2 Main Features of Flash Module
      3. 6.10.3 ECC Protection for Flash Accesses
      4. 6.10.4 Flash Access Speeds
      5. 6.10.5 Flash Program and Erase Timings for Program Flash
      6. 6.10.6 Flash Program and Erase Timings for Data Flash
    11. 6.11 Tightly Coupled RAM (TCRAM) Interface Module
      1. 6.11.1 Features
      2. 6.11.2 TCRAM Interface ECC Support
    12. 6.12 Parity Protection for Peripheral RAMs
    13. 6.13 On-Chip SRAM Initialization and Testing
      1. 6.13.1 On-Chip SRAM Self-Test Using PBIST
        1. 6.13.1.1 Features
        2. 6.13.1.2 PBIST RAM Groups
      2. 6.13.2 On-Chip SRAM Auto Initialization
    14. 6.14 External Memory Interface (EMIF)
      1. 6.14.1 Features
      2. 6.14.2 Electrical and Timing Specifications
        1. 6.14.2.1 Asynchronous RAM
        2. 6.14.2.2 Synchronous Timing
    15. 6.15 Vectored Interrupt Manager
      1. 6.15.1 VIM Features
      2. 6.15.2 Interrupt Request Assignments
    16. 6.16 DMA Controller
      1. 6.16.1 DMA Features
      2. 6.16.2 Default DMA Request Map
    17. 6.17 Real Time Interrupt Module
      1. 6.17.1 Features
      2. 6.17.2 Block Diagrams
      3. 6.17.3 Clock Source Options
      4. 6.17.4 Network Time Synchronization Inputs
    18. 6.18 Error Signaling Module
      1. 6.18.1 Features
      2. 6.18.2 ESM Channel Assignments
    19. 6.19 Reset / Abort / Error Sources
    20. 6.20 Digital Windowed Watchdog
    21. 6.21 Debug Subsystem
      1. 6.21.1  Block Diagram
      2. 6.21.2  Debug Components Memory Map
      3. 6.21.3  JTAG Identification Code
      4. 6.21.4  Debug ROM
      5. 6.21.5  JTAG Scan Interface Timings
      6. 6.21.6  Advanced JTAG Security Module
      7. 6.21.7  Embedded Trace Macrocell (ETM-R4)
        1. 6.21.7.1 ETM TRACECLKIN Selection
        2. 6.21.7.2 Timing Specifications
      8. 6.21.8  RAM Trace Port (RTP)
        1. 6.21.8.1 Features
        2. 6.21.8.2 Timing Specifications
      9. 6.21.9  Data Modification Module (DMM)
        1. 6.21.9.1 Features
        2. 6.21.9.2 Timing Specifications
      10. 6.21.10 Boundary Scan Chain
  7. 7Peripheral Information and Electrical Specifications
    1. 7.1  Peripheral Legend
    2. 7.2  Multibuffered 12-Bit Analog-to-Digital Converter
      1. 7.2.1 Features
      2. 7.2.2 Event Trigger Options
        1. 7.2.2.1 Default MIBADC1 Event Trigger Hookup
        2. 7.2.2.2 Alternate MIBADC1 Event Trigger Hookup
        3. 7.2.2.3 Default MIBADC2 Event Trigger Hookup
        4. 7.2.2.4 Alternate MIBADC2 Event Trigger Hookup
      3. 7.2.3 ADC Electrical and Timing Specifications
      4. 7.2.4 Performance (Accuracy) Specifications
        1. 7.2.4.1 MibADC Nonlinearity Errors
        2. 7.2.4.2 MibADC Total Error
    3. 7.3  General-Purpose Input/Output
      1. 7.3.1 Features
    4. 7.4  Enhanced Next Generation High-End Timer (N2HET)
      1. 7.4.1 Features
      2. 7.4.2 N2HET RAM Organization
      3. 7.4.3 Input Timing Specifications
      4. 7.4.4 N2HET1-N2HET2 Interconnections
      5. 7.4.5 N2HET Checking
        1. 7.4.5.1 Internal Monitoring
        2. 7.4.5.2 Output Monitoring Using Dual Clock Comparator (DCC)
      6. 7.4.6 Disabling N2HET Outputs
      7. 7.4.7 High-End Timer Transfer Unit (HTU)
        1. 7.4.7.1 Features
        2. 7.4.7.2 Trigger Connections
    5. 7.5  Controller Area Network (DCAN)
      1. 7.5.1 Features
      2. 7.5.2 Electrical and Timing Specifications
    6. 7.6  Local Interconnect Network Interface (LIN)
      1. 7.6.1 LIN Features
    7. 7.7  Serial Communication Interface (SCI)
      1. 7.7.1 Features
    8. 7.8  Inter-Integrated Circuit (I2C)
      1. 7.8.1 Features
      2. 7.8.2 I2C I/O Timing Specifications
    9. 7.9  Multibuffered / Standard Serial Peripheral Interface
      1. 7.9.1 Features
      2. 7.9.2 MibSPI Transmit and Receive RAM Organization
      3. 7.9.3 MibSPI Transmit Trigger Events
        1. 7.9.3.1 MIBSPI1 Event Trigger Hookup
        2. 7.9.3.2 MIBSPI3 Event Trigger Hookup
        3. 7.9.3.3 MIBSPI5 Event Trigger Hookup
      4. 7.9.4 MibSPI/SPI Master Mode I/O Timing Specifications
      5. 7.9.5 SPI Slave Mode I/O Timings
    10. 7.10 Universal Serial Bus (USB) Host and Device Controllers
      1. 7.10.1 Features
      2. 7.10.2 Electrical and Timing Specifications
  8. 8Device and Documentation Support
    1. 8.1  Device Support
      1. 8.1.1 Development Support
      2. 8.1.2 Device Nomenclature
    2. 8.2  Documentation Support
      1. 8.2.1 Related Documentation from Texas Instruments
    3. 8.3  Related Links
    4. 8.4  Community Resources
    5. 8.5  Trademarks
    6. 8.6  Electrostatic Discharge Caution
    7. 8.7  Glossary
    8. 8.8  Device Identification Code Register
    9. 8.9  Die Identification Registers
    10. 8.10 Module Certifications
      1. 8.10.1 DCAN Certification
      2. 8.10.2 LIN Certification
        1. 8.10.2.1 LIN Master Mode
        2. 8.10.2.2 LIN Slave Mode - Fixed Baud Rate
        3. 8.10.2.3 LIN Slave Mode - Adaptive Baud Rate
  9. 9Mechanical Packaging and Orderable Information
    1. 9.1 Packaging Information

5 Specifications

5.1 Absolute Maximum Ratings (1)

Over Operating Free-Air Temperature Range
MIN MAX UNIT
Supply voltage VCC(2) –0.3 1.43 V
VCCIO, VCCP(2) –0.3 4.6
VCCAD –0.3 6.25
Input voltage All input pins –0.3 4.6 V
ADC input pins –0.3 6.25
Input clamp current IIK (VI < 0 or VI > VCCIO)
All pins, except AD1IN[23:0] and AD2IN[15:0]
–20 20 mA
IIK (VI < 0 or VI > VCCAD)
AD1IN[23:0] and AD2IN[15:0]
–10 10
Total –40 40 mA
Operating free-air temperature, TA: –40 105 °C
Operating junction temperature, TJ: –40 130 °C
Storage temperature, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) Maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect to their associated grounds.

5.2 ESD Ratings

VALUE UNIT
VESD Electrostatic discharge (ESD) performance: Human body model (HBM), per ANSI/ESDA/JEDEC JS001(1) ±2 kV
Charged device model (CDM), per JESD22-C101(2) All pins ±250 V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

5.3 Power-On Hours (POH)(1)(2)

NOMINAL CORE VOLTAGE (VCC) JUNCTION
TEMPERATURE (Tj)
LIFETIME POH
1.2 105ºC 100K
(1) This information is provided solely for your convenience and does not extend or modify the warranty provided under TI's standard terms and conditions for TI semiconductor products.
(2) To avoid significant degradation, the device power-on hours (POH) must be limited to those specified in this table. To convert to equivalent POH for a specific temperature profile, see the Calculating Equivalent Power-on-Hours for Hercules Safety MCUs Application Report (SPNA207).

5.4 Recommended Operating Conditions(1)

MIN NOM MAX UNIT
VCC Digital logic supply voltage (Core) 1.14 1.2 1.32 V
VCCPLL PLL Supply Voltage 1.14 1.2 1.32 V
VCCIO Digital logic supply voltage (I/O) 3 3.3 3.6 V
VCCAD MibADC supply voltage 3 3.3/5.0 5.25 V
VCCP Flash pump supply voltage 3 3.3 3.6 V
VSS Digital logic supply ground 0 V
VSSAD MibADC supply ground –0.1 0.1 V
VADREFHI A-to-D high-voltage reference source VSSAD VCCAD V
VADREFLO A-to-D low-voltage reference source VSSAD VCCAD V
VSLEW Maximum positive slew rate for VCCIO, VCCAD and VCCP supplies 1 V/µs
TA Operating free-air temperature 105 °C
TJ Operating junction temperature(2) 130 °C
(1) All voltages are with respect to VSS, except VCCAD, which is with respect to VSSAD
(2) Reliability data is based upon a temperature profile that is equivalent to 100,000 power-on hours at 105°C junction temperature.

5.5 Switching Characteristics for Clock Domains

Over Recommended Operating Conditions

Table 5-1 Clock Domain Timing Specifications

PARAMETER DESCRIPTION CONDITIONS MIN MAX UNIT
fHCLK HCLK - System clock frequency Pipeline mode enabled 200 MHz
Pipeline mode disabled 50
fGCLK GCLK - CPU clock frequency fHCLK MHz
fVCLK VCLK - Primary peripheral clock frequency 100 MHz
fVCLK2 VCLK2 - Secondary peripheral clock frequency 100 MHz
fVCLK3 VCLK3 - Secondary peripheral clock frequency 100 MHz
fVCLKA1 VCLKA1 - Primary asynchronous peripheral clock frequency 100 MHz
fVCLKA3 VCLKA3 - Primary asynchronous peripheral clock frequency 48 MHz
fVCLKA4 VCLKA4 - Secondary asynchronous peripheral clock frequency 50 MHz
fRTICLK RTICLK - clock frequency fVCLK MHz

5.6 Wait States Required

RM48L930 RM48L730 RM48L530 wait_states_f11_spns211.gifFigure 5-1 Wait States Scheme

As shown in Figure 5-1, the TCM RAM can support program and data fetches at full CPU speed without any address or data wait states required.

The TCM flash can support zero address and data wait states up to a CPU speed of 50 MHz in nonpipelined mode. The flash supports a maximum CPU clock speed of 200 MHz in pipelined mode with one address wait state and three data wait states.

The flash wrapper defaults to nonpipelined mode with zero address wait state and one random-read data wait state.

5.7 Power Consumption

Over Recommended Operating Conditions
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ICC, ICCPLL VCC Digital supply current (operating mode) fHCLK = 200 MHz

fVCLK = 100 MHz,
Flash in pipelined mode, VCCmax
240(3) 400(1) mA
VCC Digital supply current (LBIST mode) LBIST clock rate = 100 MHz 655(2)(4)
VCC Digital supply current (PBIST mode) PBIST ROM clock frequency = 100 MHz 655(2)(4)
ICCIO VCCIO supply current (operating mode) No DC load, VCCmax 10 mA
ICCAD VCCAD supply current (operating mode) Single ADC operational, VCCADmax 15 mA
Both ADCs operational, VCCADmax 30
IADREFHI ADREFHI supply current (operating mode) Single ADC operational, ADREFHImax 3 mA
Both ADCs operational, ADREFHImax 6
ICCP VCCP pump supply current Read from 1 bank and program or erase another bank, VCCPmax 60 mA
(1) The maximum ICC, value can be derated
  • linearly with voltage
  • by 1 mA/MHz for lower operating frequency when fHCLK= 2 * fVCLK
  • for lower junction temperature by the equation below where TJK is the junction temperature in Kelvin and the result is in milliamperes.

    166 - 0.15 e0.0174 TJK
(2) The maximum ICC, value can be derated
  • linearly with voltage
  • by 1.7 mA/MHz for lower operating frequency when fHCLK= 2 * fVCLK
  • for lower junction temperature by the equation below where TJK is the junction temperature in Kelvin and the result is in milliamperes.

    166 - 0.15 e0.0174 TJK
(3) The typical value is the average current for the nominal process corner and junction temperature of 25ºC.
(4) LBIST and PBIST currents are for a short duration, typically less than 10 ms. They are usually ignored for thermal calculations for the device and the voltage regulator

5.8 Input/Output Electrical Characteristics(1)

Over Recommended Operating Conditions
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Vhys Input hysteresis All inputs 180 mV
VIL Low-level input voltage All inputs(2) –0.3 0.8 V
VIH High-level input voltage All inputs(2) 2 VCCIO + 0.3 V
VOL Low-level output voltage IOL = IOLmax 0.2 VCCIO V
IOL = 50 µA, standard output mode 0.2
IOL = 50 µA, low-EMI output mode (see Section 5.13) 0.2 VCCIO
VOH High-level output voltage IOH = IOHmax 0.8 VCCIO V
IOH = 50 µA, standard output mode VCCIO – 0.3
IOH = 50 µA, low-EMI output mode (see Section 5.13) 0.8 VCCIO
IIC Input clamp current (I/O pins) VI < VSSIO – 0.3 or VI > VCCIO + 0.3 –3.5 3.5 mA
II Input current (I/O pins) IIH Pulldown 20 µA VI = VCCIO 5 40 µA
IIH Pulldown 100 µA VI = VCCIO 40 195
IIL Pullup 20 µA VI = VSS –40 –5
IIL Pullup 100 µA VI = VSS –195 –40
All other pins No pullup or pulldown –1 1
CI Input capacitance 2 pF
CO Output capacitance 3 pF
(1) Source currents (out of the device) are negative while sink currents (into the device) are positive.
(2) This does not apply to the nPORRST pin.

5.9 Thermal Resistance Characteristics

Table 5-2 shows the thermal resistance characteristics for the QFP - PGE mechanical package.

Table 5-3 shows the thermal resistance characteristics for the BGA - ZWT mechanical package.

Table 5-2 Thermal Resistance Characteristics (PGE Package)

°C / W
JA Junction-to-free air thermal resistance, Still air using JEDEC 2S2P test board 39
JB Junction-to-board thermal resistance 26.3
JC Junction-to-case thermal resistance 6.7
ΨJT Junction-to-package top, Still air 0.10

Table 5-3 Thermal Resistance Characteristics (ZWT Package)

°C / W
JA Junction-to-free air thermal resistance, Still air (includes 5 × 5 thermal via cluster in 2s2p PCB connected to first ground plane) 18.8
JB Junction-to-board thermal resistance 14.1
JC Junction-to-case thermal resistance 7.1
ΨJT Junction-to-package top, Still air (includes 5 × 5 thermal via cluster in 2s2p PCB connected to first ground plane) 0.33

5.10 Output Buffer Drive Strengths

Table 5-4 Output Buffer Drive Strengths

LOW-LEVEL OUTPUT CURRENT,
IOL for VI=VOLmax
or
HIGH-LEVEL OUTPUT CURRENT,
IOH for VI=VOHmin
SIGNALS
8 mA

MIBSPI5CLK, MIBSPI5SOMI[0], MIBSPI5SOMI[1], MIBSPI5SOMI[2], MIBSPI5SOMI[3], MIBSPI5SIMO[0], MIBSPI5SIMO[1], MIBSPI5SIMO[2], MIBSPI5SIMO[3],

TMS, TDI, TDO, RTCK,

SPI4CLK, SPI4SIMO, SPI4SOMI, nERROR,

N2HET2[1], N2HET2[3],

All EMIF Outputs and I/Os, All ETM Outputs

4 mA

MIBSPI3SOMI, MIBSPI3SIMO, MIBSPI3CLK, MIBSPI1SIMO, MIBSPI1SOMI, MIBSPI1CLK,

nRST

2 mA zero-dominant

AD1EVT,

CAN1RX, CAN1TX, CAN2RX, CAN2TX, CAN3RX, CAN3TX,

DMM_CLK, DMM_DATA[0], DMM_DATA[1], DMM_nENA, DMM_SYNC,

GIOA[0-7], GIOB[0-7],

LINRX, LINTX,

MIBSPI1NCS[0], MIBSPI1NCS[1-3], MIBSPI1NENA, MIBSPI3NCS[0-3], MIBSPI3NENA, MIBSPI5NCS[0-3], MIBSPI5NENA,

N2HET1[0-31], N2HET2[0], N2HET2[2], N2HET2[4], N2HET2[5], N2HET2[6], N2HET2[7], N2HET2[8], N2HET2[9], N2HET2[10], N2HET2[11], N2HET2[12], N2HET2[13], N2HET2[14], N2HET2[15], N2HET2[16], N2HET2[18],

SPI4NCS[0], SPI4NENA

selectable 8 mA/2 mA

ECLK,

The default output buffer drive strength is 8 mA for these signals.

Table 5-5 Selectable 8 mA/2 mA Control

SIGNAL CONTROL BIT ADDRESS 8 mA 2 mA
ECLK SYSPC10[0] 0xFFFFFF78 0 1

5.11 Input Timings

RM48L930 RM48L730 RM48L530 ttl_inputs_pns160.gifFigure 5-2 TTL-Level Inputs

Table 5-6 Timing Requirements for Inputs(1)

MIN MAX UNIT
tpw Input minimum pulse width tc(VCLK) + 10(2) ns
(1) tc(VCLK) = peripheral VBUS clock cycle time = 1 / f(VCLK)
(2) The timing shown in Figure 5-2 is only valid for pins used in GPIO mode.

5.12 Output Timings

Table 5-7 Switching Characteristics for Output Timings Versus Load Capacitance (CL)

PARAMETER MIN MAX UNIT
Rise time, tr 8 mA low EMI pins
(see Table 5-4)
CL = 15 pF 2.5 ns
CL = 50 pF 4
CL = 100 pF 7.2
CL = 150 pF 12.5
Fall time, tf CL = 15 pF 2.5
CL = 50 pF 4
CL = 100 pF 7.2
CL = 150 pF 12.5
Rise time, tr 4 mA low EMI pins
(see Table 5-4)
CL = 15 pF 5.6 ns
CL = 50 pF 10.4
CL = 100 pF 16.8
CL = 150 pF 23.2
Fall time, tf CL = 15 pF 5.6
CL= 50 pF 10.4
CL = 100 pF 16.8
CL = 150 pF 23.2
Rise time, tr 2 mA-z low EMI pins
(see Table 5-4)
CL = 15 pF 8 ns
CL = 50 pF 15
CL = 100 pF 23
CL = 150 pF 33
Fall time, tf CL = 15 pF 8
CL = 50 pF 15
CL = 100 pF 23
CL = 150 pF 33
Rise time, tr Selectable 8 mA/2 mA-z pins
(see Table 5-4)
8 mA mode CL = 15 pF 2.5 ns
CL = 50 pF 4
CL = 100 pF 7.2
CL = 150 pF 12.5
Fall time, tf CL = 15 pF 2.5
CL = 50 pF 4
CL = 100 pF 7.2
CL = 150 pF 12.5
Rise time, tr 2 mA-z mode CL = 15 pF 8 ns
CL = 50 pF 15
CL = 100 pF 23
CL = 150 pF 33
Fall time, tf CL = 15 pF 8
CL = 50 pF 15
CL = 100 pF 23
CL = 150 pF 33
RM48L930 RM48L730 RM48L530 cmos_outputs_pns160.gifFigure 5-3 CMOS-Level Outputs

Table 5-8 Timing Requirements for Outputs(1)

MIN MAX UNIT
td(parallel_out) Delay between low-to-high, or high-to-low transition of general-purpose output signals that can be configured by an application in parallel, for example, all signals in a GIOA port, or all N2HET1 signals, and so forth. 5 ns
(1) This specification does not account for any output buffer drive strength differences or any external capacitive loading differences. Check Table 5-4 for output buffer drive strength information on each signal.

5.13 Low-EMI Output Buffers

The low-EMI output buffer has been designed explicitly to address the issue of decoupling sources of emissions from the pins which they drive. This is accomplished by adaptively controlling the impedance of the output buffer, and is particularly effective with capacitive loads.

This is not the default mode of operation of the low-EMI output buffers and must be enabled by setting the system module GPCR1 register for the desired module or signal, as shown in Table 5-9. The adaptive impedance control circuit monitors the DC bias point of the output signal. The buffer internally generates two reference levels, VREFLOW and VREFHIGH, which are set to approximately 10% and 90% of VCCIO, respectively.

Once the output buffer has driven the output to a low level, if the output voltage is below VREFLOW, then the impedance of the output buffer will increase to Hi-Z. A high degree of decoupling between the internal ground bus and the output pin will occur with capacitive loads, or any load in which no current is flowing, for example, the buffer is driving low on a resistive path to ground. Current loads on the buffer which try to pull the output voltage above VREFLOW will be opposed by the impedance of the output buffer so as to maintain the output voltage at or below VREFLOW.

Conversely, once the output buffer has driven the output to a high level, if the output voltage is above VREFHIGH then the impedance of the output buffer will again increase to Hi-Z. A high degree of decoupling between internal power bus ad output pin will occur with capacitive loads or any loads in which no current is flowing, for example, buffer is driving high on a resistive path to VCCIO. Current loads on the buffer which try to pull the output voltage below VREFHIGH will be opposed by the impedance of the buffer output so as to maintain the output voltage at or above VREFHIGH.

The bandwidth of the control circuitry is relatively low, so that the output buffer in adaptive impedance control mode cannot respond to high-frequency noise coupling into the power buses of the buffer. In this manner, internal bus noise approaching 20% peak-to-peak of VCCIO can be rejected.

Unlike standard output buffers which clamp to the rails, an output buffer in impedance control mode will allow a positive current load to pull the output voltage up to VCCIO + 0.6 V without opposition. Also, a negative current load will pull the output voltage down to VSSIO – 0.6 V without opposition. This is not an issue because the actual clamp current capability is always greater than the IOH / IOL specifications.

The low-EMI output buffers are automatically configured to be in the standard buffer mode when the device enters a low-power mode.

Table 5-9 Low-EMI Output Buffer Hookup

MODULE OR SIGNAL NAME CONTROL REGISTER TO
ENABLE LOW-EMI MODE
Module: MibSPI1 GPREG1.0
Module: SPI2 GPREG1.1
Module: MibSPI3 GPREG1.2
Reserved GPREG1.3
Reserved GPREG1.4
Reserved GPREG1.5
Reserved GPREG1.6
Reserved GPREG1.7
Signal: TMS GPREG1.8
Signal: TDI GPREG1.9
Signal: TDO GPREG1.10
Signal: RTCK GPREG1.11
Signal: TEST GPREG1.12
Signal: nERROR GPREG1.13
Reserved GPREG1.14
Reserved GPREG1.15