SPRAA99C March   2008  – May 2021 AM3351 , AM3352 , AM3354 , AM3356 , AM3357 , AM3358 , AM3359 , AM4372 , AM4376 , AM4377 , AM4378 , AM4379 , OMAPL138B-EP , TMUX646

 

  1.   Trademarks
  2. 1Introduction
  3. 2PCB Design Considerations
    1. 2.1 Solder Land Areas
    2. 2.2 Conductor Width/Spacing
    3. 2.3 High-Density Routing Techniques
    4. 2.4 Via Density
    5. 2.5 Conventional PCB Design
    6. 2.6 Advanced Design Methods
  4. 3Reliability
    1. 3.1 Reliability Calculations
    2. 3.2 Package Characteristics
    3. 3.3 Thermal Modeling
  5. 4Surface-Mounting nFBGA Packages
    1. 4.1 Design for Manufacturability (DFM)
    2. 4.2 Solder Paste
    3. 4.3 Solder Ball Collapse
    4. 4.4 Reflow
    5. 4.5 Inspection
  6. 5Packing and Shipping
    1. 5.1 Tray Packing Method
    2. 5.2 Tape-and-Reel Packing Method
    3. 5.3 Tape Format
    4. 5.4 Device Insertion
    5. 5.5 Packaging Method
  7. 6Sockets
    1. 6.1 The Design Challenge
    2. 6.2 Contacting the Ball
    3. 6.3 Pinch Contact
    4. 6.4 Micro Tuning Fork Contact
    5. 6.5 Texas Instruments Sockets
  8. 7Summary
  9.   A Frequently Asked Questions
    1.     A.1 Package Questions
    2.     A.2 Assembly Questions
    3.     A.3 Small Body nFBGA Package Questions
  10.   B Package Data Sheets
  11.   C Thermal Modeling Results
  12.   Revision History

Micro Tuning Fork Contact

Micro tuning fork contact system with vertical launch secures the solder balls to provide stable electrical continuity. Figure 6-6 shows how the micro fork contacts solder ball as well as solder witness marks after 24 hours at 150°C. There is also no contact made on the bottom of the solder ball preventing ball damage that could affect solder ball planarity specification, as illustrated in Figure 6-7.

GUID-5D58952B-0243-44A0-BCC1-2309C6363BA7-low.gifFigure 6-6 Micro Tuning Fork Contact for 0.5mm Pitch
GUID-DF17E05B-86EB-48AA-9B0E-ADAAA393A294-low.gifFigure 6-7 Micro Tuning Fork Contact and Contact Marks on Solder Balls