SPRAB89A September   2011  – March 2014

 

  1. Introduction
    1. 1.1  ABIs for the C6000
    2. 1.2  Scope
    3. 1.3  ABI Variants
    4. 1.4  Toolchains and Interoperability
    5. 1.5  Libraries
    6. 1.6  Types of Object Files
    7. 1.7  Segments
    8. 1.8  C6000 Architecture Overview
    9. 1.9  Reference Documents
    10. 1.10 Code Fragment Notation
  2. Data Representation
    1. 2.1 Basic Types
    2. 2.2 Data in Registers
    3. 2.3 Data in Memory
    4. 2.4 Complex Types
    5. 2.5 Structures and Unions
    6. 2.6 Arrays
    7. 2.7 Bit Fields
      1. 2.7.1 Volatile Bit Fields
    8. 2.8 Enumeration Types
  3. Calling Conventions
    1. 3.1 Call and Return
      1. 3.1.1 Return Address Computation
      2. 3.1.2 Call Instructions
      3. 3.1.3 Return Instruction
      4. 3.1.4 Pipeline Conventions
      5. 3.1.5 Weak Functions
    2. 3.2 Register Conventions
    3. 3.3 Argument Passing
    4. 3.4 Return Values
    5. 3.5 Structures and Unions Passed and Returned by Reference
    6. 3.6 Conventions for Compiler Helper Functions
    7. 3.7 Scratch Registers for Inter-Section Calls
    8. 3.8 Setting Up DP
  4. Data Allocation and Addressing
    1. 4.1 Data Sections and Segments
    2. 4.2 Allocation and Addressing of Static Data
      1. 4.2.1 Addressing Methods for Static Data
        1. 4.2.1.1 Near DP-Relative Addressing
        2. 4.2.1.2 Far DP-Relative Addressing
        3. 4.2.1.3 Absolute Addressing
        4. 4.2.1.4 GOT-Indirect Addressing
        5. 4.2.1.5 PC-Relative Addressing
      2. 4.2.2 Placement Conventions for Static Data
        1. 4.2.2.1 Abstract Conventions for Placement
        2. 4.2.2.2 Abstract Conventions for Addressing
        3. 4.2.2.3 Linker Requirements
      3. 4.2.3 Initialization of Static Data
    3. 4.3 Automatic Variables
    4. 4.4 Frame Layout
      1. 4.4.1 Stack Alignment
      2. 4.4.2 Register Save Order
        1. 4.4.2.1 Big-Endian Pair Swapping
        2. 4.4.2.2 Examples
      3. 4.4.3 DATA_MEM_BANK
      4. 4.4.4 C64x+ Specific Stack Layouts
        1. 4.4.4.1 _ _C6000_push_rts Layout
        2. 4.4.4.2 Compact Frame Layout
    5. 4.5 Heap-Allocated Objects
  5. Code Allocation and Addressing
    1. 5.1 Computing the Address of a Code Label
      1. 5.1.1 Absolute Addressing for Code
      2. 5.1.2 PC-Relative Addressing
      3. 5.1.3 PC-Relative Addressing Within the Same Section
      4. 5.1.4 Short-Offset PC-Relative Addressing (C64x)
      5. 5.1.5 GOT-Based Addressing for Code
    2. 5.2 Branching
    3. 5.3 Calls
      1. 5.3.1 Direct PC-Relative Call
      2. 5.3.2 Far Call Trampoline
      3. 5.3.3 Indirect Calls
    4. 5.4 Addressing Compact Instructions
  6. Addressing Model for Dynamic Linking
    1. 6.1 Terms and Concepts
    2. 6.2 Overview of Dynamic Linking Mechanisms
    3. 6.3 DSOs and DLLs
    4. 6.4 Preemption
    5. 6.5 PLT Entries
      1. 6.5.1 Direct Calls to Imported Functions
      2. 6.5.2 PLT Entry Via Absolute Address
      3. 6.5.3 PLT Entry Via GOT
    6. 6.6 The Global Offset Table
      1. 6.6.1 GOT-Based Reference Using Near DP-Relative Addressing
      2. 6.6.2 GOT-Based Reference Using Far DP-Relative Addressing
    7. 6.7 The DSBT Model
      1. 6.7.1 Entry/Exit Sequence for Exported Functions
      2. 6.7.2 Avoiding DP Loads for Internal Functions
      3. 6.7.3 Function Pointers
      4. 6.7.4 Interrupts
      5. 6.7.5 Compatibility With Non-DSBT Code
    8. 6.8 Performance Implications of Dynamic Linking
  7. Thread-Local Storage Allocation and Addressing
    1. 7.1 About Multi-Threading and Thread-Local Storage
    2. 7.2 Terms and Concepts
    3. 7.3 User Interface
    4. 7.4 ELF Object File Representation
    5. 7.5 TLS Access Models
      1. 7.5.1 C6x Linux TLS Models
        1. 7.5.1.1 General Dynamic TLS Access Model
        2. 7.5.1.2 Local Dynamic TLS Access Model
        3. 7.5.1.3 Initial Exec TLS Access Model
          1. 7.5.1.3.1 Thread Pointer
          2. 7.5.1.3.2 Initial Exec TLS Addressing
        4. 7.5.1.4 Local Exec TLS Access Model
      2. 7.5.2 Static Executable TLS Model
        1. 7.5.2.1 Static Executable Addressing
        2. 7.5.2.2 Static Executable TLS Runtime Architecture
        3. 7.5.2.3 Static Executable TLS Allocation
          1. 7.5.2.3.1 TLS Initialization Image Allocation
          2. 7.5.2.3.2 Main Thread’s TLS Allocation
          3. 7.5.2.3.3 Thread Library’s TLS Region Allocation
        4. 7.5.2.4 Static Executable TLS Initialization
          1. 7.5.2.4.1 Main Thread’s TLS Initialization
          2. 7.5.2.4.2 TLS Initialization by Thread Library
        5. 7.5.2.5 Thread Pointer
      3. 7.5.3 Bare-Metal Dynamic Linking TLS Model
        1. 7.5.3.1 Default TLS Addressing for Bare-Metal Dynamic Linking
        2. 7.5.3.2 TLS Block Creation
    6. 7.6 Thread-Local Symbol Resolution and Weak References
      1. 7.6.1 General and Local Dynamic TLS Weak Reference Addressing
      2. 7.6.2 Initial and Local Executable TLS Weak Reference Addressing
      3. 7.6.3 Static Exec and Bare Metal Dynamic TLS Model Weak References
  8. Helper Function API
    1. 8.1 Floating-Point Behavior
    2. 8.2 C Helper Function API
    3. 8.3 Special Register Conventions for Helper Functions
    4. 8.4 Helper Functions for Complex Types
    5. 8.5 Floating-Point Helper Functions for C99
  9. Standard C Library API
    1. 9.1  Reserved Symbols
    2. 9.2  <assert.h> Implementation
    3. 9.3  <complex.h> Implementation
    4. 9.4  <ctype.h> Implementation
    5. 9.5  <errno.h> Implementation
    6. 9.6  <float.h> Implementation
    7. 9.7  <inttypes.h> Implementation
    8. 9.8  <iso646.h> Implementation
    9. 9.9  <limits.h> Implementation
    10. 9.10 <locale.h> Implementation
    11. 9.11 <math.h> Implementation
    12. 9.12 <setjmp.h> Implementation
    13. 9.13 <signal.h> Implementation
    14. 9.14 <stdarg.h> Implementation
    15. 9.15 <stdbool.h> Implementation
    16. 9.16 <stddef.h> Implementation
    17. 9.17 <stdint.h> Implementation
    18. 9.18 <stdio.h> Implementation
    19. 9.19 <stdlib.h> Implementation
    20. 9.20 <string.h> Implementation
    21. 9.21 <tgmath.h> Implementation
    22. 9.22 <time.h> Implementation
    23. 9.23 <wchar.h> Implementation
    24. 9.24 <wctype.h> Implementation
  10. 10C++ ABI
    1. 10.1  Limits (GC++ABI 1.2)
    2. 10.2  Export Template (GC++ABI 1.4.2)
    3. 10.3  Data Layout (GC++ABI Chapter 2)
    4. 10.4  Initialization Guard Variables (GC++ABI 2.8)
    5. 10.5  Constructor Return Value (GC++ABI 3.1.5)
    6. 10.6  One-Time Construction API (GC++ABI 3.3.2)
    7. 10.7  Controlling Object Construction Order (GC++ ABI 3.3.4)
    8. 10.8  Demangler API (GC++ABI 3.4)
    9. 10.9  Static Data (GC++ ABI 5.2.2)
    10. 10.10 Virtual Tables and the Key function (GC++ABI 5.2.3)
    11. 10.11 Unwind Table Location (GC++ABI 5.3)
  11. 11Exception Handling
    1. 11.1  Overview
    2. 11.2  PREL31 Encoding
    3. 11.3  The Exception Index Table (EXIDX)
      1. 11.3.1 Pointer to Out-of-Line EXTAB Entry
      2. 11.3.2 EXIDX_CANTUNWIND
      3. 11.3.3 Inlined EXTAB Entry
    4. 11.4  The Exception Handling Instruction Table (EXTAB)
      1. 11.4.1 EXTAB Generic Model
      2. 11.4.2 EXTAB Compact Model
      3. 11.4.3 Personality Routines
    5. 11.5  Unwinding Instructions
      1. 11.5.1 Common Sequence
      2. 11.5.2 Byte-Encoded Unwinding Instructions
      3. 11.5.3 24-Bit Unwinding Encoding
    6. 11.6  Descriptors
      1. 11.6.1 Encoding of Type Identifiers
      2. 11.6.2 Scope
      3. 11.6.3 Cleanup Descriptor
      4. 11.6.4 Catch Descriptor
      5. 11.6.5 Function Exception Specification (FESPEC) Descriptor
    7. 11.7  Special Sections
    8. 11.8  Interaction With Non-C++ Code
      1. 11.8.1 Automatic EXIDX Entry Generation
      2. 11.8.2 Hand-Coded Assembly Functions
    9. 11.9  Interaction With System Features
      1. 11.9.1 Shared Libraries
      2. 11.9.2 Overlays
      3. 11.9.3 Interrupts
    10. 11.10 Assembly Language Operators in the TI Toolchain
  12. 12DWARF
    1. 12.1 DWARF Register Names
    2. 12.2 Call Frame Information
    3. 12.3 Vendor Names
    4. 12.4 Vendor Extensions
  13. 13ELF Object Files (Processor Supplement)
    1. 13.1 Registered Vendor Names
    2. 13.2 ELF Header
    3. 13.3 Sections
      1. 13.3.1 Section Indexes
      2. 13.3.2 Section Types
      3. 13.3.3 Extended Section Header Attributes
      4. 13.3.4 Subsections
      5. 13.3.5 Special Sections
      6. 13.3.6 Section Alignment
    4. 13.4 Symbol Table
      1. 13.4.1 Symbol Types
      2. 13.4.2 Common Block Symbols
      3. 13.4.3 Symbol Names
      4. 13.4.4 Reserved Symbol Names
      5. 13.4.5 Mapping Symbols
    5. 13.5 Relocation
      1. 13.5.1 Relocation Types
      2. 13.5.2 Relocation Operations
      3. 13.5.3 Relocation of Unresolved Weak References
  14. 14ELF Program Loading and Dynamic Linking (Processor Supplement)
    1. 14.1 Program Header
      1. 14.1.1 Base Address
      2. 14.1.2 Segment Contents
      3. 14.1.3 Bound and Read-Only Segments
      4. 14.1.4 Thread-Local Storage
    2. 14.2 Program Loading
    3. 14.3 Dynamic Linking
      1. 14.3.1 Program Interpreter
      2. 14.3.2 Dynamic Section
      3. 14.3.3 Shared Object Dependencies
      4. 14.3.4 Global Offset Table
      5. 14.3.5 Procedure Linkage Table
      6. 14.3.6 Preemption
      7. 14.3.7 Initialization and Termination
    4. 14.4 Bare-Metal Dynamic Linking Model
      1. 14.4.1 File Types
      2. 14.4.2 ELF Identification
      3. 14.4.3 Visibility and Binding
      4. 14.4.4 Data Addressing
      5. 14.4.5 Code Addressing
      6. 14.4.6 Dynamic Information
  15. 15Linux ABI
    1. 15.1  File Types
    2. 15.2  ELF Identification
    3. 15.3  Program Headers and Segments
    4. 15.4  Data Addressing
      1. 15.4.1 Data Segment Base Table (DSBT)
      2. 15.4.2 Global Offset Table (GOT)
    5. 15.5  Code Addressing
    6. 15.6  Lazy Binding
    7. 15.7  Visibility
    8. 15.8  Preemption
    9. 15.9  Import-as-Own Preemption
    10. 15.10 Program Loading
    11. 15.11 Dynamic Information
    12. 15.12 Initialization and Termination Functions
    13. 15.13 Summary of the Linux Model
  16. 16Symbol Versioning
    1. 16.1 ELF Symbol Versioning Overview
    2. 16.2 Version Section Identification
  17. 17Build Attributes
    1. 17.1 C6000 ABI Build Attribute Subsection
    2. 17.2 C6000 Build Attribute Tags
  18. 18Copy Tables and Variable Initialization
    1. 18.1 Copy Table Format
    2. 18.2 Compressed Data Formats
      1. 18.2.1 RLE
      2. 18.2.2 LZSS Format
    3. 18.3 Variable Initialization
  19. 19Extended Program Header Attributes
    1. 19.1 Encoding
    2. 19.2 Attribute Tag Definitions
    3. 19.3 Extended Program Header Attributes Section Format
  20. 20Revision History

Terms and Concepts

Thread-local variables are thread-specific and have static storage duration. They must be allocated similarly to global and static variables that are allocated in the .neardata or .fardata section if they are initialized and .bss if uninitialized. Global and static variables have only one copy per process, whereas thread-locals need a separate instance per thread.

Threads are created by a thread manager when a program calls for the creation of a thread. For example, a parallel region in an OpenMP application makes an OS thread library call to create worker threads; these worker threads will join/merge at the bottom of the parallel region.

During thread creation, the storage for thread-locals must be allocated and initialized. This means there needs to be an initialization image for use in initializing per thread TLS storage. The output of the static linker, the static link unit, must contain a TLS initialization image if thread-local storage is used. The static link unit is referred to as a module.

The TLS initialization image for a single module is called a TLS Image. TLS is allocated for each thread as part of the thread creation and is initialized with the data from the TLS Image. The memory allocated per thread for thread-local variables from a single module is called a TLS Block.

In the static executable model, the static linker produces an executable that is loaded and executed from the start address. RTOS and/or thread libraries are linked in as part of the executable. In this case, there is only one module and hence only one TLS Image and one TLS Block. This simplifies TLS access. The main thread is usually created at program initialization; other threads are created by the threads library. The main thread’s TLS Block should be allocated and initialized by the program loader (see Section 14.3). It is the responsibility of the thread library to allocate and initialize TLS for the threads it creates.

In a C6x Linux system, a program (process) is created by loading multiple modules: an executable and zero or more dynamic libraries. Each module can have a TLS Image. The program’s TLS Image consists of all the modules’ TLS Images. This is called a TLS Template. Normally, the executable and all dependent modules are loaded at process startup. These are called initially loaded modules. A Linux program can also load a dynamic library after startup by calling the dlopen() system function. Modules loaded after startup are called dlopened modules. During thread creation, TLS blocks are created based on the TLS Template. The run-time structure consisting of TLS Blocks from all modules is called TLS.

In the case of bare-metal dynamic linking, by default, there are only initially loaded modules and they can be consecutively placed to form the TLS Template.

See Chapter 14 for more information on C6x program loading and dynamic linking.