SPRAB89A September   2011  – March 2014

 

  1. Introduction
    1. 1.1  ABIs for the C6000
    2. 1.2  Scope
    3. 1.3  ABI Variants
    4. 1.4  Toolchains and Interoperability
    5. 1.5  Libraries
    6. 1.6  Types of Object Files
    7. 1.7  Segments
    8. 1.8  C6000 Architecture Overview
    9. 1.9  Reference Documents
    10. 1.10 Code Fragment Notation
  2. Data Representation
    1. 2.1 Basic Types
    2. 2.2 Data in Registers
    3. 2.3 Data in Memory
    4. 2.4 Complex Types
    5. 2.5 Structures and Unions
    6. 2.6 Arrays
    7. 2.7 Bit Fields
      1. 2.7.1 Volatile Bit Fields
    8. 2.8 Enumeration Types
  3. Calling Conventions
    1. 3.1 Call and Return
      1. 3.1.1 Return Address Computation
      2. 3.1.2 Call Instructions
      3. 3.1.3 Return Instruction
      4. 3.1.4 Pipeline Conventions
      5. 3.1.5 Weak Functions
    2. 3.2 Register Conventions
    3. 3.3 Argument Passing
    4. 3.4 Return Values
    5. 3.5 Structures and Unions Passed and Returned by Reference
    6. 3.6 Conventions for Compiler Helper Functions
    7. 3.7 Scratch Registers for Inter-Section Calls
    8. 3.8 Setting Up DP
  4. Data Allocation and Addressing
    1. 4.1 Data Sections and Segments
    2. 4.2 Allocation and Addressing of Static Data
      1. 4.2.1 Addressing Methods for Static Data
        1. 4.2.1.1 Near DP-Relative Addressing
        2. 4.2.1.2 Far DP-Relative Addressing
        3. 4.2.1.3 Absolute Addressing
        4. 4.2.1.4 GOT-Indirect Addressing
        5. 4.2.1.5 PC-Relative Addressing
      2. 4.2.2 Placement Conventions for Static Data
        1. 4.2.2.1 Abstract Conventions for Placement
        2. 4.2.2.2 Abstract Conventions for Addressing
        3. 4.2.2.3 Linker Requirements
      3. 4.2.3 Initialization of Static Data
    3. 4.3 Automatic Variables
    4. 4.4 Frame Layout
      1. 4.4.1 Stack Alignment
      2. 4.4.2 Register Save Order
        1. 4.4.2.1 Big-Endian Pair Swapping
        2. 4.4.2.2 Examples
      3. 4.4.3 DATA_MEM_BANK
      4. 4.4.4 C64x+ Specific Stack Layouts
        1. 4.4.4.1 _ _C6000_push_rts Layout
        2. 4.4.4.2 Compact Frame Layout
    5. 4.5 Heap-Allocated Objects
  5. Code Allocation and Addressing
    1. 5.1 Computing the Address of a Code Label
      1. 5.1.1 Absolute Addressing for Code
      2. 5.1.2 PC-Relative Addressing
      3. 5.1.3 PC-Relative Addressing Within the Same Section
      4. 5.1.4 Short-Offset PC-Relative Addressing (C64x)
      5. 5.1.5 GOT-Based Addressing for Code
    2. 5.2 Branching
    3. 5.3 Calls
      1. 5.3.1 Direct PC-Relative Call
      2. 5.3.2 Far Call Trampoline
      3. 5.3.3 Indirect Calls
    4. 5.4 Addressing Compact Instructions
  6. Addressing Model for Dynamic Linking
    1. 6.1 Terms and Concepts
    2. 6.2 Overview of Dynamic Linking Mechanisms
    3. 6.3 DSOs and DLLs
    4. 6.4 Preemption
    5. 6.5 PLT Entries
      1. 6.5.1 Direct Calls to Imported Functions
      2. 6.5.2 PLT Entry Via Absolute Address
      3. 6.5.3 PLT Entry Via GOT
    6. 6.6 The Global Offset Table
      1. 6.6.1 GOT-Based Reference Using Near DP-Relative Addressing
      2. 6.6.2 GOT-Based Reference Using Far DP-Relative Addressing
    7. 6.7 The DSBT Model
      1. 6.7.1 Entry/Exit Sequence for Exported Functions
      2. 6.7.2 Avoiding DP Loads for Internal Functions
      3. 6.7.3 Function Pointers
      4. 6.7.4 Interrupts
      5. 6.7.5 Compatibility With Non-DSBT Code
    8. 6.8 Performance Implications of Dynamic Linking
  7. Thread-Local Storage Allocation and Addressing
    1. 7.1 About Multi-Threading and Thread-Local Storage
    2. 7.2 Terms and Concepts
    3. 7.3 User Interface
    4. 7.4 ELF Object File Representation
    5. 7.5 TLS Access Models
      1. 7.5.1 C6x Linux TLS Models
        1. 7.5.1.1 General Dynamic TLS Access Model
        2. 7.5.1.2 Local Dynamic TLS Access Model
        3. 7.5.1.3 Initial Exec TLS Access Model
          1. 7.5.1.3.1 Thread Pointer
          2. 7.5.1.3.2 Initial Exec TLS Addressing
        4. 7.5.1.4 Local Exec TLS Access Model
      2. 7.5.2 Static Executable TLS Model
        1. 7.5.2.1 Static Executable Addressing
        2. 7.5.2.2 Static Executable TLS Runtime Architecture
        3. 7.5.2.3 Static Executable TLS Allocation
          1. 7.5.2.3.1 TLS Initialization Image Allocation
          2. 7.5.2.3.2 Main Thread’s TLS Allocation
          3. 7.5.2.3.3 Thread Library’s TLS Region Allocation
        4. 7.5.2.4 Static Executable TLS Initialization
          1. 7.5.2.4.1 Main Thread’s TLS Initialization
          2. 7.5.2.4.2 TLS Initialization by Thread Library
        5. 7.5.2.5 Thread Pointer
      3. 7.5.3 Bare-Metal Dynamic Linking TLS Model
        1. 7.5.3.1 Default TLS Addressing for Bare-Metal Dynamic Linking
        2. 7.5.3.2 TLS Block Creation
    6. 7.6 Thread-Local Symbol Resolution and Weak References
      1. 7.6.1 General and Local Dynamic TLS Weak Reference Addressing
      2. 7.6.2 Initial and Local Executable TLS Weak Reference Addressing
      3. 7.6.3 Static Exec and Bare Metal Dynamic TLS Model Weak References
  8. Helper Function API
    1. 8.1 Floating-Point Behavior
    2. 8.2 C Helper Function API
    3. 8.3 Special Register Conventions for Helper Functions
    4. 8.4 Helper Functions for Complex Types
    5. 8.5 Floating-Point Helper Functions for C99
  9. Standard C Library API
    1. 9.1  Reserved Symbols
    2. 9.2  <assert.h> Implementation
    3. 9.3  <complex.h> Implementation
    4. 9.4  <ctype.h> Implementation
    5. 9.5  <errno.h> Implementation
    6. 9.6  <float.h> Implementation
    7. 9.7  <inttypes.h> Implementation
    8. 9.8  <iso646.h> Implementation
    9. 9.9  <limits.h> Implementation
    10. 9.10 <locale.h> Implementation
    11. 9.11 <math.h> Implementation
    12. 9.12 <setjmp.h> Implementation
    13. 9.13 <signal.h> Implementation
    14. 9.14 <stdarg.h> Implementation
    15. 9.15 <stdbool.h> Implementation
    16. 9.16 <stddef.h> Implementation
    17. 9.17 <stdint.h> Implementation
    18. 9.18 <stdio.h> Implementation
    19. 9.19 <stdlib.h> Implementation
    20. 9.20 <string.h> Implementation
    21. 9.21 <tgmath.h> Implementation
    22. 9.22 <time.h> Implementation
    23. 9.23 <wchar.h> Implementation
    24. 9.24 <wctype.h> Implementation
  10. 10C++ ABI
    1. 10.1  Limits (GC++ABI 1.2)
    2. 10.2  Export Template (GC++ABI 1.4.2)
    3. 10.3  Data Layout (GC++ABI Chapter 2)
    4. 10.4  Initialization Guard Variables (GC++ABI 2.8)
    5. 10.5  Constructor Return Value (GC++ABI 3.1.5)
    6. 10.6  One-Time Construction API (GC++ABI 3.3.2)
    7. 10.7  Controlling Object Construction Order (GC++ ABI 3.3.4)
    8. 10.8  Demangler API (GC++ABI 3.4)
    9. 10.9  Static Data (GC++ ABI 5.2.2)
    10. 10.10 Virtual Tables and the Key function (GC++ABI 5.2.3)
    11. 10.11 Unwind Table Location (GC++ABI 5.3)
  11. 11Exception Handling
    1. 11.1  Overview
    2. 11.2  PREL31 Encoding
    3. 11.3  The Exception Index Table (EXIDX)
      1. 11.3.1 Pointer to Out-of-Line EXTAB Entry
      2. 11.3.2 EXIDX_CANTUNWIND
      3. 11.3.3 Inlined EXTAB Entry
    4. 11.4  The Exception Handling Instruction Table (EXTAB)
      1. 11.4.1 EXTAB Generic Model
      2. 11.4.2 EXTAB Compact Model
      3. 11.4.3 Personality Routines
    5. 11.5  Unwinding Instructions
      1. 11.5.1 Common Sequence
      2. 11.5.2 Byte-Encoded Unwinding Instructions
      3. 11.5.3 24-Bit Unwinding Encoding
    6. 11.6  Descriptors
      1. 11.6.1 Encoding of Type Identifiers
      2. 11.6.2 Scope
      3. 11.6.3 Cleanup Descriptor
      4. 11.6.4 Catch Descriptor
      5. 11.6.5 Function Exception Specification (FESPEC) Descriptor
    7. 11.7  Special Sections
    8. 11.8  Interaction With Non-C++ Code
      1. 11.8.1 Automatic EXIDX Entry Generation
      2. 11.8.2 Hand-Coded Assembly Functions
    9. 11.9  Interaction With System Features
      1. 11.9.1 Shared Libraries
      2. 11.9.2 Overlays
      3. 11.9.3 Interrupts
    10. 11.10 Assembly Language Operators in the TI Toolchain
  12. 12DWARF
    1. 12.1 DWARF Register Names
    2. 12.2 Call Frame Information
    3. 12.3 Vendor Names
    4. 12.4 Vendor Extensions
  13. 13ELF Object Files (Processor Supplement)
    1. 13.1 Registered Vendor Names
    2. 13.2 ELF Header
    3. 13.3 Sections
      1. 13.3.1 Section Indexes
      2. 13.3.2 Section Types
      3. 13.3.3 Extended Section Header Attributes
      4. 13.3.4 Subsections
      5. 13.3.5 Special Sections
      6. 13.3.6 Section Alignment
    4. 13.4 Symbol Table
      1. 13.4.1 Symbol Types
      2. 13.4.2 Common Block Symbols
      3. 13.4.3 Symbol Names
      4. 13.4.4 Reserved Symbol Names
      5. 13.4.5 Mapping Symbols
    5. 13.5 Relocation
      1. 13.5.1 Relocation Types
      2. 13.5.2 Relocation Operations
      3. 13.5.3 Relocation of Unresolved Weak References
  14. 14ELF Program Loading and Dynamic Linking (Processor Supplement)
    1. 14.1 Program Header
      1. 14.1.1 Base Address
      2. 14.1.2 Segment Contents
      3. 14.1.3 Bound and Read-Only Segments
      4. 14.1.4 Thread-Local Storage
    2. 14.2 Program Loading
    3. 14.3 Dynamic Linking
      1. 14.3.1 Program Interpreter
      2. 14.3.2 Dynamic Section
      3. 14.3.3 Shared Object Dependencies
      4. 14.3.4 Global Offset Table
      5. 14.3.5 Procedure Linkage Table
      6. 14.3.6 Preemption
      7. 14.3.7 Initialization and Termination
    4. 14.4 Bare-Metal Dynamic Linking Model
      1. 14.4.1 File Types
      2. 14.4.2 ELF Identification
      3. 14.4.3 Visibility and Binding
      4. 14.4.4 Data Addressing
      5. 14.4.5 Code Addressing
      6. 14.4.6 Dynamic Information
  15. 15Linux ABI
    1. 15.1  File Types
    2. 15.2  ELF Identification
    3. 15.3  Program Headers and Segments
    4. 15.4  Data Addressing
      1. 15.4.1 Data Segment Base Table (DSBT)
      2. 15.4.2 Global Offset Table (GOT)
    5. 15.5  Code Addressing
    6. 15.6  Lazy Binding
    7. 15.7  Visibility
    8. 15.8  Preemption
    9. 15.9  Import-as-Own Preemption
    10. 15.10 Program Loading
    11. 15.11 Dynamic Information
    12. 15.12 Initialization and Termination Functions
    13. 15.13 Summary of the Linux Model
  16. 16Symbol Versioning
    1. 16.1 ELF Symbol Versioning Overview
    2. 16.2 Version Section Identification
  17. 17Build Attributes
    1. 17.1 C6000 ABI Build Attribute Subsection
    2. 17.2 C6000 Build Attribute Tags
  18. 18Copy Tables and Variable Initialization
    1. 18.1 Copy Table Format
    2. 18.2 Compressed Data Formats
      1. 18.2.1 RLE
      2. 18.2.2 LZSS Format
    3. 18.3 Variable Initialization
  19. 19Extended Program Header Attributes
    1. 19.1 Encoding
    2. 19.2 Attribute Tag Definitions
    3. 19.3 Extended Program Header Attributes Section Format
  20. 20Revision History

Argument Passing

The first ten arguments to a function are passed in registers. Arguments are assigned, in declared order (except arguments passed in register quads), to registers in the following sequence:

A4, B4, A6, B6, A8, B8, A10, B10, A12, B12

Arguments whose size is between 32 and 64 bits are passed in register pairs, using the even registers from the previous list for their least-significant part and the corresponding odd register for their most-significant part. For example, in the following example 'a' is passed in A4 and 'b' in B5:B4:

    func1(int a, double b);

Arguments of type float complex are passed in register pairs. The ordering is endian dependent. In little-endian mode the real part is passed in the even register and the imaginary part in the odd. For big-endian mode this ordering is reversed.

Arguments of type double complex are passed in register quads, using the first available quad from the following list: A7:A6:A5:A4, B7:B6:B5:B4, A11:A10:A9:A8, B11:B10:B9:B8. In little-endian mode the real part is passed in the lower-numbered pair (e.g. A5:A4) and the imaginary part is passed in the higher-numbered pair (A7:A6). For big-endian this ordering is reversed. Any register that is bypassed for a quad-register argument is available for subsequent arguments. For example, in the following function 'w' is passed in A4, 'x' is passed in B4, 'y' is passed in A11:A10:A9:A8, and 'z' backfills into A6:

    func2(int w, int x, double complex y, int z);

Any remaining arguments are placed on the stack at increasing addresses, starting at SP+4. Each argument is placed at the next available address correctly aligned for its type. Thus if the first stack argument requires 64-bit alignment, its address will be SP+8.

In C++, the this pointer is passed to non-static member functions in A4 as an implicit first argument.

Structures and unions with size 64 bits or less are passed by value, either in registers or on the stack as described in the list that follows. Structures and unions larger than 64 bits are passed by reference, as described in Section 3.6.

Any arguments not passed in registers are placed on the stack at increasing addresses, starting at SP+4. Each argument is placed at the next available address correctly aligned for its type, subject to the following additional considerations:

  • The stack alignment of a scalar is that of its declared type.
  • Regardless of the alignment required by its members, the stack alignment of a structure passed by value is the smallest power of two greater than or equal to its size. (This cannot exceed 8 bytes, which is the largest allowable size for a structure passed by value.)
  • Each argument reserves an amount of stack space equal to its size rounded up to the next multiple of its stack alignment.

Note that SP+4 is not 8-byte aligned, so if the first argument requires 8 byte alignment, it will be stored in memory at SP+8.

For a variadic C function (that is, a function declared with an ellipsis indicating that it is called with varying numbers of arguments), the last explicitly declared argument and all remaining arguments are passed on the stack, so that its stack address can act as a reference for accessing the undeclared arguments.

Undeclared scalar arguments to a variadic function that are smaller than int are promoted to and passed as int, in accordance with the C language.