SPRAB89A September   2011  – March 2014

 

  1. Introduction
    1. 1.1  ABIs for the C6000
    2. 1.2  Scope
    3. 1.3  ABI Variants
    4. 1.4  Toolchains and Interoperability
    5. 1.5  Libraries
    6. 1.6  Types of Object Files
    7. 1.7  Segments
    8. 1.8  C6000 Architecture Overview
    9. 1.9  Reference Documents
    10. 1.10 Code Fragment Notation
  2. Data Representation
    1. 2.1 Basic Types
    2. 2.2 Data in Registers
    3. 2.3 Data in Memory
    4. 2.4 Complex Types
    5. 2.5 Structures and Unions
    6. 2.6 Arrays
    7. 2.7 Bit Fields
      1. 2.7.1 Volatile Bit Fields
    8. 2.8 Enumeration Types
  3. Calling Conventions
    1. 3.1 Call and Return
      1. 3.1.1 Return Address Computation
      2. 3.1.2 Call Instructions
      3. 3.1.3 Return Instruction
      4. 3.1.4 Pipeline Conventions
      5. 3.1.5 Weak Functions
    2. 3.2 Register Conventions
    3. 3.3 Argument Passing
    4. 3.4 Return Values
    5. 3.5 Structures and Unions Passed and Returned by Reference
    6. 3.6 Conventions for Compiler Helper Functions
    7. 3.7 Scratch Registers for Inter-Section Calls
    8. 3.8 Setting Up DP
  4. Data Allocation and Addressing
    1. 4.1 Data Sections and Segments
    2. 4.2 Allocation and Addressing of Static Data
      1. 4.2.1 Addressing Methods for Static Data
        1. 4.2.1.1 Near DP-Relative Addressing
        2. 4.2.1.2 Far DP-Relative Addressing
        3. 4.2.1.3 Absolute Addressing
        4. 4.2.1.4 GOT-Indirect Addressing
        5. 4.2.1.5 PC-Relative Addressing
      2. 4.2.2 Placement Conventions for Static Data
        1. 4.2.2.1 Abstract Conventions for Placement
        2. 4.2.2.2 Abstract Conventions for Addressing
        3. 4.2.2.3 Linker Requirements
      3. 4.2.3 Initialization of Static Data
    3. 4.3 Automatic Variables
    4. 4.4 Frame Layout
      1. 4.4.1 Stack Alignment
      2. 4.4.2 Register Save Order
        1. 4.4.2.1 Big-Endian Pair Swapping
        2. 4.4.2.2 Examples
      3. 4.4.3 DATA_MEM_BANK
      4. 4.4.4 C64x+ Specific Stack Layouts
        1. 4.4.4.1 _ _C6000_push_rts Layout
        2. 4.4.4.2 Compact Frame Layout
    5. 4.5 Heap-Allocated Objects
  5. Code Allocation and Addressing
    1. 5.1 Computing the Address of a Code Label
      1. 5.1.1 Absolute Addressing for Code
      2. 5.1.2 PC-Relative Addressing
      3. 5.1.3 PC-Relative Addressing Within the Same Section
      4. 5.1.4 Short-Offset PC-Relative Addressing (C64x)
      5. 5.1.5 GOT-Based Addressing for Code
    2. 5.2 Branching
    3. 5.3 Calls
      1. 5.3.1 Direct PC-Relative Call
      2. 5.3.2 Far Call Trampoline
      3. 5.3.3 Indirect Calls
    4. 5.4 Addressing Compact Instructions
  6. Addressing Model for Dynamic Linking
    1. 6.1 Terms and Concepts
    2. 6.2 Overview of Dynamic Linking Mechanisms
    3. 6.3 DSOs and DLLs
    4. 6.4 Preemption
    5. 6.5 PLT Entries
      1. 6.5.1 Direct Calls to Imported Functions
      2. 6.5.2 PLT Entry Via Absolute Address
      3. 6.5.3 PLT Entry Via GOT
    6. 6.6 The Global Offset Table
      1. 6.6.1 GOT-Based Reference Using Near DP-Relative Addressing
      2. 6.6.2 GOT-Based Reference Using Far DP-Relative Addressing
    7. 6.7 The DSBT Model
      1. 6.7.1 Entry/Exit Sequence for Exported Functions
      2. 6.7.2 Avoiding DP Loads for Internal Functions
      3. 6.7.3 Function Pointers
      4. 6.7.4 Interrupts
      5. 6.7.5 Compatibility With Non-DSBT Code
    8. 6.8 Performance Implications of Dynamic Linking
  7. Thread-Local Storage Allocation and Addressing
    1. 7.1 About Multi-Threading and Thread-Local Storage
    2. 7.2 Terms and Concepts
    3. 7.3 User Interface
    4. 7.4 ELF Object File Representation
    5. 7.5 TLS Access Models
      1. 7.5.1 C6x Linux TLS Models
        1. 7.5.1.1 General Dynamic TLS Access Model
        2. 7.5.1.2 Local Dynamic TLS Access Model
        3. 7.5.1.3 Initial Exec TLS Access Model
          1. 7.5.1.3.1 Thread Pointer
          2. 7.5.1.3.2 Initial Exec TLS Addressing
        4. 7.5.1.4 Local Exec TLS Access Model
      2. 7.5.2 Static Executable TLS Model
        1. 7.5.2.1 Static Executable Addressing
        2. 7.5.2.2 Static Executable TLS Runtime Architecture
        3. 7.5.2.3 Static Executable TLS Allocation
          1. 7.5.2.3.1 TLS Initialization Image Allocation
          2. 7.5.2.3.2 Main Thread’s TLS Allocation
          3. 7.5.2.3.3 Thread Library’s TLS Region Allocation
        4. 7.5.2.4 Static Executable TLS Initialization
          1. 7.5.2.4.1 Main Thread’s TLS Initialization
          2. 7.5.2.4.2 TLS Initialization by Thread Library
        5. 7.5.2.5 Thread Pointer
      3. 7.5.3 Bare-Metal Dynamic Linking TLS Model
        1. 7.5.3.1 Default TLS Addressing for Bare-Metal Dynamic Linking
        2. 7.5.3.2 TLS Block Creation
    6. 7.6 Thread-Local Symbol Resolution and Weak References
      1. 7.6.1 General and Local Dynamic TLS Weak Reference Addressing
      2. 7.6.2 Initial and Local Executable TLS Weak Reference Addressing
      3. 7.6.3 Static Exec and Bare Metal Dynamic TLS Model Weak References
  8. Helper Function API
    1. 8.1 Floating-Point Behavior
    2. 8.2 C Helper Function API
    3. 8.3 Special Register Conventions for Helper Functions
    4. 8.4 Helper Functions for Complex Types
    5. 8.5 Floating-Point Helper Functions for C99
  9. Standard C Library API
    1. 9.1  Reserved Symbols
    2. 9.2  <assert.h> Implementation
    3. 9.3  <complex.h> Implementation
    4. 9.4  <ctype.h> Implementation
    5. 9.5  <errno.h> Implementation
    6. 9.6  <float.h> Implementation
    7. 9.7  <inttypes.h> Implementation
    8. 9.8  <iso646.h> Implementation
    9. 9.9  <limits.h> Implementation
    10. 9.10 <locale.h> Implementation
    11. 9.11 <math.h> Implementation
    12. 9.12 <setjmp.h> Implementation
    13. 9.13 <signal.h> Implementation
    14. 9.14 <stdarg.h> Implementation
    15. 9.15 <stdbool.h> Implementation
    16. 9.16 <stddef.h> Implementation
    17. 9.17 <stdint.h> Implementation
    18. 9.18 <stdio.h> Implementation
    19. 9.19 <stdlib.h> Implementation
    20. 9.20 <string.h> Implementation
    21. 9.21 <tgmath.h> Implementation
    22. 9.22 <time.h> Implementation
    23. 9.23 <wchar.h> Implementation
    24. 9.24 <wctype.h> Implementation
  10. 10C++ ABI
    1. 10.1  Limits (GC++ABI 1.2)
    2. 10.2  Export Template (GC++ABI 1.4.2)
    3. 10.3  Data Layout (GC++ABI Chapter 2)
    4. 10.4  Initialization Guard Variables (GC++ABI 2.8)
    5. 10.5  Constructor Return Value (GC++ABI 3.1.5)
    6. 10.6  One-Time Construction API (GC++ABI 3.3.2)
    7. 10.7  Controlling Object Construction Order (GC++ ABI 3.3.4)
    8. 10.8  Demangler API (GC++ABI 3.4)
    9. 10.9  Static Data (GC++ ABI 5.2.2)
    10. 10.10 Virtual Tables and the Key function (GC++ABI 5.2.3)
    11. 10.11 Unwind Table Location (GC++ABI 5.3)
  11. 11Exception Handling
    1. 11.1  Overview
    2. 11.2  PREL31 Encoding
    3. 11.3  The Exception Index Table (EXIDX)
      1. 11.3.1 Pointer to Out-of-Line EXTAB Entry
      2. 11.3.2 EXIDX_CANTUNWIND
      3. 11.3.3 Inlined EXTAB Entry
    4. 11.4  The Exception Handling Instruction Table (EXTAB)
      1. 11.4.1 EXTAB Generic Model
      2. 11.4.2 EXTAB Compact Model
      3. 11.4.3 Personality Routines
    5. 11.5  Unwinding Instructions
      1. 11.5.1 Common Sequence
      2. 11.5.2 Byte-Encoded Unwinding Instructions
      3. 11.5.3 24-Bit Unwinding Encoding
    6. 11.6  Descriptors
      1. 11.6.1 Encoding of Type Identifiers
      2. 11.6.2 Scope
      3. 11.6.3 Cleanup Descriptor
      4. 11.6.4 Catch Descriptor
      5. 11.6.5 Function Exception Specification (FESPEC) Descriptor
    7. 11.7  Special Sections
    8. 11.8  Interaction With Non-C++ Code
      1. 11.8.1 Automatic EXIDX Entry Generation
      2. 11.8.2 Hand-Coded Assembly Functions
    9. 11.9  Interaction With System Features
      1. 11.9.1 Shared Libraries
      2. 11.9.2 Overlays
      3. 11.9.3 Interrupts
    10. 11.10 Assembly Language Operators in the TI Toolchain
  12. 12DWARF
    1. 12.1 DWARF Register Names
    2. 12.2 Call Frame Information
    3. 12.3 Vendor Names
    4. 12.4 Vendor Extensions
  13. 13ELF Object Files (Processor Supplement)
    1. 13.1 Registered Vendor Names
    2. 13.2 ELF Header
    3. 13.3 Sections
      1. 13.3.1 Section Indexes
      2. 13.3.2 Section Types
      3. 13.3.3 Extended Section Header Attributes
      4. 13.3.4 Subsections
      5. 13.3.5 Special Sections
      6. 13.3.6 Section Alignment
    4. 13.4 Symbol Table
      1. 13.4.1 Symbol Types
      2. 13.4.2 Common Block Symbols
      3. 13.4.3 Symbol Names
      4. 13.4.4 Reserved Symbol Names
      5. 13.4.5 Mapping Symbols
    5. 13.5 Relocation
      1. 13.5.1 Relocation Types
      2. 13.5.2 Relocation Operations
      3. 13.5.3 Relocation of Unresolved Weak References
  14. 14ELF Program Loading and Dynamic Linking (Processor Supplement)
    1. 14.1 Program Header
      1. 14.1.1 Base Address
      2. 14.1.2 Segment Contents
      3. 14.1.3 Bound and Read-Only Segments
      4. 14.1.4 Thread-Local Storage
    2. 14.2 Program Loading
    3. 14.3 Dynamic Linking
      1. 14.3.1 Program Interpreter
      2. 14.3.2 Dynamic Section
      3. 14.3.3 Shared Object Dependencies
      4. 14.3.4 Global Offset Table
      5. 14.3.5 Procedure Linkage Table
      6. 14.3.6 Preemption
      7. 14.3.7 Initialization and Termination
    4. 14.4 Bare-Metal Dynamic Linking Model
      1. 14.4.1 File Types
      2. 14.4.2 ELF Identification
      3. 14.4.3 Visibility and Binding
      4. 14.4.4 Data Addressing
      5. 14.4.5 Code Addressing
      6. 14.4.6 Dynamic Information
  15. 15Linux ABI
    1. 15.1  File Types
    2. 15.2  ELF Identification
    3. 15.3  Program Headers and Segments
    4. 15.4  Data Addressing
      1. 15.4.1 Data Segment Base Table (DSBT)
      2. 15.4.2 Global Offset Table (GOT)
    5. 15.5  Code Addressing
    6. 15.6  Lazy Binding
    7. 15.7  Visibility
    8. 15.8  Preemption
    9. 15.9  Import-as-Own Preemption
    10. 15.10 Program Loading
    11. 15.11 Dynamic Information
    12. 15.12 Initialization and Termination Functions
    13. 15.13 Summary of the Linux Model
  16. 16Symbol Versioning
    1. 16.1 ELF Symbol Versioning Overview
    2. 16.2 Version Section Identification
  17. 17Build Attributes
    1. 17.1 C6000 ABI Build Attribute Subsection
    2. 17.2 C6000 Build Attribute Tags
  18. 18Copy Tables and Variable Initialization
    1. 18.1 Copy Table Format
    2. 18.2 Compressed Data Formats
      1. 18.2.1 RLE
      2. 18.2.2 LZSS Format
    3. 18.3 Variable Initialization
  19. 19Extended Program Header Attributes
    1. 19.1 Encoding
    2. 19.2 Attribute Tag Definitions
    3. 19.3 Extended Program Header Attributes Section Format
  20. 20Revision History

Call Frame Information

Debuggers need to be able to view and modify the local variables of any function as its execution progresses.

DWARF3 does this by having the compiler keep track of where (in registers or on the stack) a function stores its data. The compiler encodes this information in a byte-coded language specified in Section 6.4 of the DWARF3 standard. This allows the debugger to progressively recreate a previous state by interpreting the byte-coded language. Each function activation is represented by a base address, called the Canonical Frame address (CFA), and a set of values corresponding to the contents of the machine's registers during that activation. Given the point to which the activation's execution has progressed, the debugger can figure out where all of the function's data is, and can unwind the stack to a previous state, including a previous function activation.

The DWARF3 standard suggests a very large unwinding table, with one row for each code address and one column for each register, virtual or not, including the CFA. Each cell contains unwinding instructions for that register at that point in time (code address).

Both the definition of the CFA and the set of registers comprising the state are architecture-specific.

The set of registers includes all the registers listed in Table 12-1, indexed by their DWARF register numbers from the first column.

For the CFA, the C6000 ABI follows the convention suggested in the DWARF3 standard, defining it as the value of SP (B15) at the call site in the previous frame (that of the calling procedure).

There is no distinct column in the unwinding table for the virtual return address as suggested in Section 6.4.4 of the DWARF3 standard. In accordance with the calling conventions, the return address is represented by the B3 column of the unwinding table.

The unwinding table may include registers that are not present on all C6000 ISAs. Therefore a situation may arise in which the ISA executing the program has registers that are not mentioned in the call frame information. In this situation, the interpreter should behave as follows:

  • Callee-saved registers should be initialized to the same-value rule.
  • All other registers should be initialized to the undefined rule.