SPRABI1D January   2018  – July 2022 66AK2E05 , 66AK2G12 , 66AK2H06 , 66AK2H12 , 66AK2H14 , 66AK2L06 , AM5K2E02 , AM5K2E04 , SM320C6678-HIREL , TMS320C6652 , TMS320C6654 , TMS320C6655 , TMS320C6657 , TMS320C6670 , TMS320C6671 , TMS320C6672 , TMS320C6674 , TMS320C6678

 

  1.   Trademarks
  2. Introduction
  3. Background
  4. Migrating Designs From DDR2 to DDR3 (Features and Comparisons)
    1. 3.1 Topologies
      1. 3.1.1 Balanced Line Topology
        1. 3.1.1.1 Balanced Line Topology Issues
      2. 3.1.2 Fly-By Topology
        1. 3.1.2.1 Balanced Line Topology Issues
    2. 3.2 ECC (Error Correction)
    3. 3.3 DDR3 Features and Improvements
      1. 3.3.1 Read Leveling
      2. 3.3.2 Write Leveling
      3. 3.3.3 Pre-fetch
      4. 3.3.4 ZQ Calibration
      5. 3.3.5 Reset Pin Functionality
      6. 3.3.6 Additional DDR2 to DDR3 Differences
  5. Prerequisites
    1. 4.1 High Speed Designs
    2. 4.2 JEDEC DDR3 Specification – Compatibility and Familiarity
    3. 4.3 Memory Types
    4. 4.4 Memory Speeds
    5. 4.5 Addressable Memory Space
    6. 4.6 DDR3 SDRAM/UDIMM Memories, Topologies, and Configurations
      1. 4.6.1 Topologies
      2. 4.6.2 Configurations
        1. 4.6.2.1 Memories – SDRAM Selection Criteria
    7. 4.7 DRAM Electrical Interface Requirements
      1. 4.7.1 Slew
      2. 4.7.2 Overshoot and Undershoot Specifications
        1. 4.7.2.1 Overshoot and Undershoot Example Calculations
      3. 4.7.3 Typical DDR3 AC and DC Characteristics
      4. 4.7.4 DDR3 Tolerances and Noise – Reference Signals
  6. Package Selection
    1. 5.1 Summary
      1. 5.1.1 ×4 SDRAM
      2. 5.1.2 ×8 SDRAM
      3. 5.1.3 ×16 SDRAM
      4. 5.1.4 ×32 SDRAM
      5. 5.1.5 ×64 SDRAM
  7. Physical Design and Implementation
    1. 6.1 Electrical Connections
      1. 6.1.1 Pin Connectivity and Unused Pins – SDRAM Examples
      2. 6.1.2 Pin Connectivity – ECC UDIMM and Non-ECC UDIMM Examples
    2. 6.2 Signal Terminations
      1. 6.2.1 External Terminations – When Using Read and Write Leveling
      2. 6.2.2 External Terminations – When Read and Write Leveling is Not Used
      3. 6.2.3 Internal Termination – On-Die Terminations
      4. 6.2.4 Active Terminations
      5. 6.2.5 Passive Terminations
      6. 6.2.6 Termination Component Selection
    3. 6.3 Mechanical Layout and Routing Considerations
      1. 6.3.1 Routing Considerations – SDRAMs
        1. 6.3.1.1  Mechanical Layout – SDRAMs
        2. 6.3.1.2  Stack Up – SDRAMs
        3. 6.3.1.3  Routing Rules – General Overview (SDRAMs)
        4. 6.3.1.4  Routing Rules – Address and Command Lines (SDRAMs)
        5. 6.3.1.5  Routing Rules – Control Lines (SDRAMs)
        6. 6.3.1.6  Routing Rules – Data Lines (SDRAMs)
        7. 6.3.1.7  Routing Rules – Clock Lines (SDRAMs)
        8. 6.3.1.8  Routing Rules – Power (SDRAMs)
        9. 6.3.1.9  Write Leveling Limit Impact on Routing – KeyStone I
        10. 6.3.1.10 Round-Trip Delay Impact on Routing – KeyStone I
        11. 6.3.1.11 Write Leveling Limit Impact on Routing – KeyStone II
        12. 6.3.1.12 Round-Trip Delay Impact on Routing – KeyStone II
      2. 6.3.2 Routing Considerations – UDIMMs
        1. 6.3.2.1 Mechanical Layout – UDIMMs
        2. 6.3.2.2 Stack Up – UDIMMs
        3. 6.3.2.3 Routing Rules – General Overview (UDIMMs)
        4. 6.3.2.4 Routing Rules – Address and Command Lines (UDIMMs)
        5. 6.3.2.5 Routing Rules – Control Lines (UDIMMs)
        6. 6.3.2.6 Routing Rules – Data Lines (UDIMMs)
        7. 6.3.2.7 Routing Rules – Clock Lines (UDIMMs)
        8. 6.3.2.8 Routing Rules – Power (UDIMMs)
        9. 6.3.2.9 Write-Leveling Limit Impact on Routing
    4. 6.4 Timing Considerations
    5. 6.5 Impedance Considerations
      1. 6.5.1 Routing Impedances – KeyStone I Devices
        1. 6.5.1.1 Data Group Signals
        2. 6.5.1.2 Fly-By Signals
      2. 6.5.2 Routing Impedances – KeyStone II Devices
        1. 6.5.2.1 Data Group Signals
        2. 6.5.2.2 Fly-By Signals
      3. 6.5.3 Comparison to JEDEC UDIMM Impedance Recommendations
    6. 6.6 Switching and Output Considerations
  8. Simulation and Modeling
    1. 7.1 Simulation and Modeling
    2. 7.2 Tools
    3. 7.3 Models
    4. 7.4 TI Commitment
  9. Power
    1. 8.1 DDR3 SDRAM Power Requirements
      1. 8.1.1 Vref Voltage Requirements
      2. 8.1.2 VTT Voltage Requirements
    2. 8.2 DSP DDR3 Power Requirements
    3. 8.3 DDR3 Power Estimation
    4. 8.4 DSP DDR3 Interface Power Estimation
    5. 8.5 Sequencing – DDR3 and DSP
  10. Disclaimers
  11. 10References
  12. 11Revision History

Round-Trip Delay Impact on Routing – KeyStone I

The leveling processes in the DDR3 interface impose an upper limit on the maximum round-trip delay. If this limit is exceeded, the DDR3 interface may fail the leveling process and data corruption may occur. This limit is sufficiently large that well-controlled topologies will not likely exceed the limit.

The round-trip delay for a given SDRAM is defined as the sum of two delays. The first is the longest delay for the clock, command, control, and address groups to that SDRAM. The second is the delay for the data group to that same SDRAM. This round-trip delay must be calculated for each byte-lane to each SDRAM device implemented in the DDR3 memory topology, including SDRAM devices on DIMM. All of these individual sums must be below the limit to help ensure robust operation.

Internally, the DDR3 controller logic has a theoretical upper limit of four clock cycles. There are multiple processes that have variation terms that reduce this time window, as listed below:

  • ddrclkoutperiod – period of reference clock the DSP is providing to SDRAM
  • tDQSCK - DQS to CK skew limit from SDRAM data sheet – this is stated for each standard speed grade in the JEDEC DDR3 SDRAM standard
  • Invert clock out – delay of half a clock cycle if enabled – option normally used only in very small memory topologies
  • adjustment_sum – sum that accounts for all of the leveling errors, buffer delays, and jitter terms associated with the circuitry, and the leveling adjustment – upper limit is defined to be half a clock period plus 225 ps.

The following equation provides an approximation of the maximum round trip delay:

  • Case 1: Invert clock out disabled
    • round_tripdelay < (4 * ddrclkoutperiod) - tDQSCK - adjustment_sum
    • round_tripdelay < (4 * ddrclkoutperiod) - tDQSCK - 0.5 * ddrclkoutperiod - 225 ps
    • round_tripdelay < (3.5 * ddrclkoutperiod) - tDQSCK - 225 ps
  • Case 2: Invert clock out enabled (adds an additional half-clock period of delay to the command delay term)
    • round_tripdelay < (4 * ddrclkoutperiod) - tDQSCK - 0.5 * ddrclkoutperiod - adjustment_sum
    • round_tripdelay < (4 * ddrclkoutperiod) - tDQSCK - 0.5 * ddrclkoutperiod - 0.5 * drclkoutperiod - 225 ps
    • round_tripdelay < (3 * ddrclkoutperiod) - tDQSCK - 225 ps

Based on the previous equations, the following calculations and summary table show the write leveling skew limitations for both invert clock out enabled and disabled, given the DDR3-1333 and DDR3-1600 JEDEC SDRAM specification. The first column for each speed-grade category lists the maximum write leveling skew in picoseconds. The second column for each lists the maximum write leveling skew in inches assuming a signal propagation rate of 180 ps/in.

For DDR3-1333:

  • ddrclkoutperiod = 1500 ps
  • tDQSCK = ±255 ps
  • margin = 100 ps
  • Case 1: Invert clock out disabled:
    • round_tripdelay < (3.5 * ddrclkoutperiod) - tDQSCK - 225 ps
    • round_tripdelay < (3.5 * 1500 ps) - 255 ps - 225 ps
    • round_tripdelay < 4770 ps
  • Case 2: Invert clock out enabled (adds an additional half-clock period of delay to the command delay term):
    • round_tripdelay < (3 * ddrclkoutperiod) - tDQSCK - 225 ps
    • round_tripdelay < (3 * 1500 ps) - 255 ps - 225 ps
    • round_tripdelay < 4020 ps

For DDR3-1600:

  • ddrclkoutperiod = 1250 ps
  • tDQSCK = ±225 ps
  • margin = 100 ps
  • Case 1: Invert clock out disabled
    • round_tripdelay < (3.5 * ddrclkoutperiod) - tDQSCK - 225 ps
    • round_tripdelay < (3.5 * 1250 ps) - 225 ps - 225 ps
    • round_tripdelay < 3925 ps
  • Case 2: Invert clock out enabled (adds an additional half-clock period of delay to the command delay term)
    • round_tripdelay < (3 * ddrclkoutperiod) - tDQSCK - 225 ps
    • round_tripdelay < (3 * 1250 ps) - 225 ps - 225 ps
    • round_tripdelay < 3300 ps

Table 6-9 shows the round trip delay limitations for both invert clock out enabled and disabled. The first column for each lists the maximum round-trip delay in picoseconds. The second column for each lists the maximum routing length in inches assuming a signal propagation rate of 180 ps/in.

Table 6-9 Maximum Round Trip Delay Example - Invert Clock Out Enabled and Disabled
Speed Grade Invert Clock Out Disabled Invert Clock Out Enabled
DDR3-1333 4770 ps 26.50 in 4020 ps 22.33 in
DDR3-1600 3925 ps 21.81 in 3300 ps 18.33 in

Because this is preliminary guidance and some small margin should be subtracted from these delays to account for additional terms such as multi-rank delay skew, TI recommends that the maximum routing lengths be reduced by 10%.