SPRAC71B February   2019  – October 2023

 

  1.   1
  2. Introduction
    1. 1.1  ABIs for the C28x
    2. 1.2  Scope
    3. 1.3  ABI Variants
    4. 1.4  Toolchains and Interoperability
    5. 1.5  Libraries
    6. 1.6  Types of Object Files
    7. 1.7  Segments
    8. 1.8  C28x Architecture Overview
    9. 1.9  C28x Memory Models
    10. 1.10 Reference Documents
    11. 1.11 Code Fragment Notation
  3. Data Representation
    1. 2.1 Basic Types
    2. 2.2 Data in Registers
    3. 2.3 Data in Memory
    4. 2.4 Pointer Types
    5. 2.5 Complex Types
    6. 2.6 Structures and Unions
    7. 2.7 Arrays
    8. 2.8 Bit Fields
      1. 2.8.1 Volatile Bit Fields
    9. 2.9 Enumeration Types
  4. Calling Conventions
    1. 3.1 Call and Return
      1. 3.1.1 Call Instructions
        1. 3.1.1.1 Indirect Calls
        2. 3.1.1.2 Direct Calls
      2. 3.1.2 Return Instruction
      3. 3.1.3 Pipeline Conventions
      4. 3.1.4 Weak Functions
    2. 3.2 Register Conventions
      1. 3.2.1 Argument Registers
      2. 3.2.2 Callee-Saved Registers
    3. 3.3 Argument Passing
      1. 3.3.1 Passing 16-Bit Arguments
      2. 3.3.2 Passing Longer Arguments
      3. 3.3.3 C++ Argument Passing
      4. 3.3.4 Passing Structs and Unions
      5. 3.3.5 Stack Layout of Arguments Not Passed in Registers
      6. 3.3.6 Frame Pointer
    4. 3.4 Return Values
    5. 3.5 Structures and Unions Passed and Returned by Reference
    6. 3.6 Conventions for Compiler Helper Functions
    7. 3.7 Prolog and Epilog Helper Functions
    8. 3.8 Scratch Registers for Functions Already Seen
    9. 3.9 Interrupt Functions
  5. Data Allocation and Addressing
    1. 4.1 Data Sections and Segments
    2. 4.2 Data Blocking
    3. 4.3 Addressing Modes
    4. 4.4 Allocation and Addressing of Static Data
      1. 4.4.1 Addressing Methods for Static Data
      2. 4.4.2 Placement Conventions for Static Data
        1. 4.4.2.1 Abstract Conventions for Addressing
      3. 4.4.3 Initialization of Static Data
    5. 4.5 Automatic Variables
    6. 4.6 Frame Layout
      1. 4.6.1 Stack Alignment
      2. 4.6.2 Register Save Order
    7. 4.7 Heap-Allocated Objects
  6. Code Allocation and Addressing
    1. 5.1 Computing the Address of a Code Label
    2. 5.2 Calls
      1. 5.2.1 Direct Call
      2. 5.2.2 Far Call Trampoline
      3. 5.2.3 Indirect Calls
  7. Helper Function API
    1. 6.1 Floating-Point Behavior
    2. 6.2 C Helper Function API
    3. 6.3 Floating-Point Helper Functions for C99
  8. Standard C Library API
    1. 7.1  About Standard C Libraries
    2. 7.2  Reserved Symbols
    3. 7.3  <assert.h> Implementation
    4. 7.4  <complex.h> Implementation
    5. 7.5  <ctype.h> Implementation
    6. 7.6  <errno.h> Implementation
    7. 7.7  <float.h> Implementation
    8. 7.8  <inttypes.h> Implementation
    9. 7.9  <iso646.h> Implementation
    10. 7.10 <limits.h> Implementation
    11. 7.11 <locale.h> Implementation
    12. 7.12 <math.h> Implementation
    13. 7.13 <setjmp.h> Implementation
    14. 7.14 <signal.h> Implementation
    15. 7.15 <stdarg.h> Implementation
    16. 7.16 <stdbool.h> Implementation
    17. 7.17 <stddef.h> Implementation
    18. 7.18 <stdint.h> Implementation
    19. 7.19 <stdio.h> Implementation
    20. 7.20 <stdlib.h> Implementation
    21. 7.21 <string.h> Implementation
    22. 7.22 <tgmath.h> Implementation
    23. 7.23 <time.h> Implementation
    24. 7.24 <wchar.h> Implementation
    25. 7.25 <wctype.h> Implementation
  9. C++ ABI
    1. 8.1  Limits (GC++ABI 1.2)
    2. 8.2  Export Template (GC++ABI 1.4.2)
    3. 8.3  Data Layout (GC++ABI Chapter 2)
    4. 8.4  Initialization Guard Variables (GC++ABI 2.8)
    5. 8.5  Constructor Return Value (GC++ABI 3.1.5)
    6. 8.6  One-Time Construction API (GC++ABI 3.3.2)
    7. 8.7  Controlling Object Construction Order (GC++ ABI 3.3.4)
    8. 8.8  Demangler API (GC++ABI 3.4)
    9. 8.9  Static Data (GC++ ABI 5.2.2)
    10. 8.10 Virtual Tables and the Key function (GC++ABI 5.2.3)
    11. 8.11 Unwind Table Location (GC++ABI 5.3)
  10. Exception Handling
    1. 9.1  Overview
    2. 9.2  PREL31 Encoding
    3. 9.3  The Exception Index Table (EXIDX)
      1. 9.3.1 Pointer to Out-of-Line EXTAB Entry
      2. 9.3.2 EXIDX_CANTUNWIND
      3. 9.3.3 Inlined EXTAB Entry
    4. 9.4  The Exception Handling Instruction Table (EXTAB)
      1. 9.4.1 EXTAB Generic Model
      2. 9.4.2 EXTAB Compact Model
      3. 9.4.3 Personality Routines
    5. 9.5  Unwinding Instructions
      1. 9.5.1 Common Sequence
      2. 9.5.2 Byte-Encoded Unwinding Instructions
    6. 9.6  Descriptors
      1. 9.6.1 Encoding of Type Identifiers
      2. 9.6.2 Scope
      3. 9.6.3 Cleanup Descriptor
      4. 9.6.4 Catch Descriptor
      5. 9.6.5 Function Exception Specification (FESPEC) Descriptor
    7. 9.7  Special Sections
    8. 9.8  Interaction With Non-C++ Code
      1. 9.8.1 Automatic EXIDX Entry Generation
      2. 9.8.2 Hand-Coded Assembly Functions
    9. 9.9  Interaction With System Features
      1. 9.9.1 Shared Libraries
      2. 9.9.2 Overlays
      3. 9.9.3 Interrupts
    10. 9.10 Assembly Language Operators in the TI Toolchain
  11. 10DWARF
    1. 10.1 DWARF Register Names
    2. 10.2 Call Frame Information
    3. 10.3 Vendor Names
    4. 10.4 Vendor Extensions
  12. 11ELF Object Files (Processor Supplement)
    1. 11.1 Registered Vendor Names
    2. 11.2 ELF Header
    3. 11.3 Sections
      1. 11.3.1 Section Indexes
      2. 11.3.2 Section Types
      3. 11.3.3 Extended Section Header Attributes
      4. 11.3.4 Subsections
      5. 11.3.5 Special Sections
      6. 11.3.6 Section Alignment
    4. 11.4 Symbol Table
      1. 11.4.1 Symbol Types
      2. 11.4.2 Common Block Symbols
      3. 11.4.3 Symbol Names
      4. 11.4.4 Reserved Symbol Names
      5. 11.4.5 Mapping Symbols
    5. 11.5 Relocation
      1. 11.5.1 Relocation Types
        1. 11.5.1.1 Absolute Relocations
        2. 11.5.1.2 PC-Relative Relocations
        3. 11.5.1.3 Relocations in Data Sections
        4. 11.5.1.4 Relocations for C28x Instructions
        5. 11.5.1.5 Other Relocation Types
      2. 11.5.2 Relocation Operations
      3. 11.5.3 Relocation of Unresolved Weak References
  13. 12ELF Program Loading and Linking (Processor Supplement)
    1. 12.1 Program Header
      1. 12.1.1 Base Address
      2. 12.1.2 Segment Contents
      3. 12.1.3 Thread-Local Storage
    2. 12.2 Program Loading
  14. 13Build Attributes
    1. 13.1 About Build Attributes
    2. 13.2 C28x ABI Build Attribute Subsection
    3. 13.3 Build Attribute Tags
  15. 14Copy Tables and Variable Initialization
    1. 14.1 About Copy Tables
    2. 14.2 Copy Table Format
    3. 14.3 Compressed Data Formats
      1. 14.3.1 RLE
      2. 14.3.2 LZSS Format
    4. 14.4 Variable Initialization
  16. 15Revision History
    1.     188

C28x ABI Build Attribute Subsection

Attributes that are specified by this ABI are recorded in the subsection with the vendor string C28x. Toolchains should determine compatibility between relocatable files using solely these attributes; vendor-specific information should not be used other than as permitted by the Tag_Compatibility attribute which is provided for this purpose.

The vendor data in the C28x subsection contains any number of attribute vectors. Attribute vectors begin with a scope tag that specifies whether they apply to the entire file or only to listed sections or symbols. An attribute vector has one of the following three formats:

GUID-02C54B23-0AA7-424E-8A04-435F5C97A64B-low.gif

The length field specifies the length in bytes of the entire attribute vector, including the other fields. The symbol and section number fields are sequences of section or symbol indexes, terminated with 0.

Attributes in an attribute vector are represented as a sequence of tag-value pairs. Tags are represented as ULEB128 constants. Values are either ULEB128 constants or NULL-terminated strings.

The effect of omitting a tag in the file scope is identical to including it with a value of 0 or "", depending on the parameter type.

To allow a consumer to skip unrecognized tags, the parameter type is standardized as ULEB128 for even-numbered tags and a NULL-terminated string for odd-numbered tags. Tags 1, 2, 3 (the scope tags) and 32 (Tag_ABI_Compatibility) are exceptions to this convention.

As the ABI evolves, new attributes may be added. To enable older toolchains to robustly process files that may contain attributes they do not comprehend, the ABI adopts the following conventions:

  • Tags 0-63 must be comprehended by a consuming tool. A consuming tool may choose to generate an error if an unknown tag in this range is encountered.
  • Tags 64-127 convey information a consumer can ignore safely.
  • For N >= 128, tag N has the same property as tag N modulo 128.