SPRACU1A October   2020  – June 2021 AM2431 , AM2432 , AM2434 , AM6411 , AM6412 , AM6421 , AM6441 , AM6442

 

  1.   Trademarks
  2. 1Overview
    1. 1.1 Board Designs Supported
    2. 1.2 General Board Layout Guidelines
    3. 1.3 PCB Stack-Up
    4. 1.4 Bypass Capacitors
      1. 1.4.1 Bulk Bypass Capacitors
      2. 1.4.2 High-Speed Bypass Capacitors
      3. 1.4.3 Return Current Bypass Capacitors
    5. 1.5 Velocity Compensation
  3. 2DDR4 Board Design and Layout Guidance
    1. 2.1  DDR4 Introduction
    2. 2.2  DDR4 Device Implementations Supported
    3. 2.3  DDR4 Interface Schematics
      1. 2.3.1 DDR4 Implementation Using 16-Bit SDRAM Devices
      2. 2.3.2 DDR4 Implementation Using 8-Bit SDRAM Devices
    4. 2.4  Compatible JEDEC DDR4 Devices
    5. 2.5  Placement
    6. 2.6  DDR4 Keepout Region
    7. 2.7  VPP
    8. 2.8  Net Classes
    9. 2.9  DDR4 Signal Termination
    10. 2.10 VREF Routing
    11. 2.11 VTT
    12. 2.12 POD Interconnect
    13. 2.13 CK and ADDR_CTRL Topologies and Routing Guidance
    14. 2.14 Data Group Topologies and Routing Guidance
    15. 2.15 CK and ADDR_CTRL Routing Specification
      1. 2.15.1 CACLM - Clock Address Control Longest Manhattan Distance
      2. 2.15.2 CK and ADDR_CTRL Routing Limits
    16. 2.16 Data Group Routing Specification
      1. 2.16.1 DQLM - DQ Longest Manhattan Distance
      2. 2.16.2 Data Group Routing Limits
    17. 2.17 Bit Swapping
      1. 2.17.1 Data Bit Swapping
      2. 2.17.2 Address and Control Bit Swapping
  4. 3LPDDR4 Board Design and Layout Guidance
    1. 3.1  LPDDR4 Introduction
    2. 3.2  LPDDR4 Device Implementations Supported
    3. 3.3  LPDDR4 Interface Schematics
    4. 3.4  Compatible JEDEC LPDDR4 Devices
    5. 3.5  Placement
    6. 3.6  LPDDR4 Keepout Region
    7. 3.7  Net Classes
    8. 3.8  LPDDR4 Signal Termination
    9. 3.9  LPDDR4 VREF Routing
    10. 3.10 LPDDR4 VTT
    11. 3.11 CK and ADDR_CTRL Topologies
    12. 3.12 Data Group Topologies
    13. 3.13 CK and ADDR_CTRL Routing Specification
    14. 3.14 Data Group Routing Specification
    15. 3.15 Channel, Byte, and Bit Swapping
  5. 4Revision History

General Board Layout Guidelines

To ensure good signaling performance, the following general board design guidelines must be followed:

  • Avoid crossing plane splits in the signal reference planes.
  • Some signals require a ground (also called VSS) reference plane to obtain the needed signal integrity. Some may even need it on both sides.
  • Use the widest trace that is practical between decoupling capacitors and memory modules.
  • Minimize inter-symbol interference (ISI) by keeping impedances matched.
  • Minimize crosstalk by isolating sensitive signals, such as strobes and clocks, and by using a proper PCB stack-up.
  • Avoid return path discontinuities by adding vias or capacitors whenever signals change layers and reference planes.
  • Minimize reference voltage noise through proper isolation and proper use of decoupling capacitors on the reference input pins on the SDRAMs.
  • Keep the signal routing stub lengths as short as possible.
  • Add additional spacing for clock and strobe nets to minimize crosstalk.
  • Maintain a common ground (VSS) reference for all bypass and decoupling capacitors.
  • Consider the differences in propagation delays between microstrip and stripline nets when evaluating timing constraints.
  • Via-to-via coupling can be a significant part of PCB-level crosstalk. GND shielding vias may need to be inserted between adjacent signal vias.
  • Via stubs affect signal integrity. Via back-drilling may be required in some instances to improve signal integrity.

For more information, see the High-Speed Interface Layout Guidelines. It provides additional general guidance for successful routing of high-speed signals.