SPRACV2 November   2020 AWR1843 , AWR2243

 

  1.   Trademarks
  2. 1Introduction
    1. 1.1 Background – Simple Single-Chip Applications
  3. 2Cascade Incoherence Sources and Mitigation Strategies
    1. 2.1 PCB Routing Imbalances and Device Processes
    2. 2.2 Temperature Drifts
    3. 2.3 Scheduling of Run Time Calibrations
  4. 3Enabling Cascade Coherence and Improved Phase Performance
    1. 3.1 High-Level Summary
      1. 3.1.1 Sequence of Proposed Steps and Introductory Flow Diagrams
    2. 3.2 Saving RF INIT Calibration Results at Customer Factory
      1. 3.2.1 Note on LODIST Calibration
      2. 3.2.2 TX Phase Shifter Calibration and Saving Results at Customer Factory
    3. 3.3 Corner Reflector-Based Offsets Measurement at Customer Factory
      1. 3.3.1 Corner Reflector-Based Inter-Channel Imbalances
      2. 3.3.2 Corner Reflector-Based TX Phase Shifter Errors
    4. 3.4 Restoring Customer Calibration Results In-Field
      1. 3.4.1 Restore RF INIT Calibrations Results In-Field
      2. 3.4.2 Restore TX Phase Shift Calibration Results In-Field
    5. 3.5 Host-Based Temperature Calibrations In-Field
      1. 3.5.1 Disabling AWR Devices’ Autonomous Run Time Calibrations
      2. 3.5.2 Enabling Host-Based Temperature Calibrations of Inter-Channel Imbalances
      3. 3.5.3 Switching of DSP Imbalance Data
      4. 3.5.4 Enabling TX Phase Shifter’s Host-Based Temperature Calibrations
        1. 3.5.4.1 Estimating TX Phase Shift Values at Any Temperature
        2. 3.5.4.2 Temperature Correction LUTs for AWR1843TX Phase Shifter
        3. 3.5.4.3 Temperature Correction LUTs for AWR2243 TX Phase Shifter
        4. 3.5.4.4 Restoring TX Phase Shift Values – Format Conversion
        5. 3.5.4.5 Restoring TX Phase Shift Values – Transition Timing and Constraints
        6. 3.5.4.6 Typical Post-Calibration TX Phase Shifter Accuracies
        7. 3.5.4.7 Correcting for Temperature Drift While Sweeping Across Phase Settings
        8. 3.5.4.8 Amplitude Stability Across Phase Shifter Settings
        9. 3.5.4.9 Impact of Customer PCB’s 20-GHz Sync Path Attenuation on TX Phase Shifters
      5. 3.5.5 Ambient and Device Temperatures
  5. 4Concept Illustrations
  6. 5Miscellaneous (Interference, Gain Variation, Sampling Jitter)
    1. 5.1 Handling Interference In-Field
    2. 5.2 Information on TX Power and RX Gain Drift with Temperature
    3. 5.3 Jitter Between Chirp Start and ADC Sampling Start
  7. 6Conclusion
  8.   A Appendix
    1.     A.1 Terminology
    2.     A.2 References
    3.     A.3 Flow Diagrams for Proposed Cascade Coherence Scheme
    4.     A.4 LUTs for TX Phase Shifter Temperature Drift Mitigation
    5.     A.5 Circular Shift of TX Phase Shifter Calibration Data Save and Restore APIs

Restoring TX Phase Shift Values – Transition Timing and Constraints

The AWR PHASE SHIFTER CAL DATA RESTORE SB message should be issued to the device only when the radar frames are not ongoing, i.e. after issuing the issue the FRAME STOP command (using AWR FRAMESTARTSTOP CONF SB) and before issuing the next FRAME START command. If the customer desires to issue the AWR PHASE SHIFTER CAL DATA RESTORE SB without stopping the frame, then the host is responsible to ensure that the API is issued not when active frames are ongoing. This is true for both AWR1843 and AWR2243.