SPRACZ7 January   2022 TMS320F28075 , TMS320F28075-Q1 , TMS320F28076 , TMS320F28232 , TMS320F28232-Q1 , TMS320F28234 , TMS320F28234-Q1 , TMS320F28235 , TMS320F28235-Q1 , TMS320F28332 , TMS320F28333 , TMS320F28334 , TMS320F28335 , TMS320F28335-Q1 , TMS320F28374D , TMS320F28374S , TMS320F28375D , TMS320F28375S , TMS320F28375S-Q1 , TMS320F28376D , TMS320F28376S , TMS320F28377D , TMS320F28377D-EP , TMS320F28377D-Q1 , TMS320F28377S , TMS320F28377S-Q1 , TMS320F28378D , TMS320F28378S , TMS320F28379D , TMS320F28379D-Q1 , TMS320F28379S

 

  1.   Trademarks
  2. Introduction
    1. 1.1 Abbreviations
  3. Central Processing Unit (CPU)
  4. Development Tools
    1. 3.1 Driver Library (Driverlib)
    2. 3.2 Embedded Application Binary Interface (EABI) Support
  5. Package and Pinout
  6. Operating Frequency and Power Management
  7. Power Sequencing
  8. Input Clock Options
  9. Memory Map
  10. Flash and OTP
    1. 9.1 Size and Number of Sectors
    2. 9.2 Flash Parameters
    3. 9.3 Flash Programming
    4. 9.4 Entry Point into Flash
    5. 9.5 Dual Code Security Module (DCSM) and Password Locations
    6. 9.6 OTP
  11. 10Boot ROM
    1. 10.1 Boot ROM Reserved RAM
    2. 10.2 Boot Mode Selection
    3. 10.3 Bootloaders
  12. 11Architectural Enhancements
    1. 11.1 Clock Sources and Domains
    2. 11.2 Watchdog Timer
    3. 11.3 Peripheral Interrupt Expansion (PIE)
    4. 11.4 Lock Protection Registers
    5. 11.5 General-Purpose Input/Output (GPIO)
    6. 11.6 External Interrupts
    7. 11.7 Crossbar (X-BAR)
  13. 12Peripherals
    1. 12.1 New Peripherals
      1. 12.1.1 Analog Subsystem Interconnect
      2. 12.1.2 Comparator Subsystem (CMPSS)
      3. 12.1.3 Control Law Accelerator (CLA)
    2. 12.2 Control Peripherals
      1. 12.2.1 Enhanced Pulse Width Modulator (ePWM)
      2. 12.2.2 Enhanced Capture Module (eCAP)
      3. 12.2.3 Enhanced Quadrature Encode Pulse Module (eQEP)
      4. 12.2.4 Sigma-Delta Filter Module (SDFM)
    3. 12.3 Analog Peripherals
      1. 12.3.1 Analog-to-Digital Converter (ADC)
    4. 12.4 Communication Peripherals
      1. 12.4.1 SPI
      2. 12.4.2 SCI
      3. 12.4.3 USB
      4. 12.4.4 I2C
      5. 12.4.5 CAN
  14. 13Configurable Logic Block (CLB)
  15. 14Device Comparison Summary
  16. 15References

Dual Code Security Module (DCSM) and Password Locations

The code security mechanism differs considerably between the F2837xD/S/07x (DCSM) and F2833x/23x (CSM) devices. The DCSM offers protection for two zones (zone-1 and zone-2), and is intended to block access and visibility to the various on-chip memory resources with the purpose of preventing duplication and reverse engineering of proprietary code. The options for both zones are identical, and each memory resource can be assigned to either zone. Either zone can protect each sector of flash individually, each Dx/LSx memory block individually, User OTP, and secure ROM.

Each zone is secured by its own 128-bit (four 32-bit words) user defined password, which is stored in its dedicated OTP location based on a zone-specific link pointer. The user accessible CSMKEY registers are used to secure and unsecure the device, and a new or un-programmed device will be unsecure by default. Since the OTP cannot be erased, flexibility is provided by using a link pointer to select the location of the active zone region within the OTP block, allowing the user to make multiple modifications to the configuration up to thirty times. This is accomplished by exploiting the fact that each bit in the OTP can be programmed one bit at a time, and a “1” can be programmed to a “0”, but not erased back to a “1”.

The most significant bit position in the link pointer that is programmed to a “0” defines the valid offset base address for the active zone region within the OTP block. This differs from the F2833x/23x devices where the 128-bit (eight 16-bit words) password is stored in the last eight locations in flash.